Wax is susceptible to heat. Wax is responds to heat addition. The forces in the wax when heat is added are being broken off and are much lesser as its original state. Hope this answers the question. Have a nice day.<span />
2.1648 kg of CH4 will generate 119341 KJ of energy.
Explanation:
Write down the values given in the question
CH4(g) +2 O2 → CO2(g) +2 H20 (g)
ΔH1 = - 802 kJ
2 H2O(g)→2 H2O(I)
ΔH2= -88 kJ
The overall chemical reaction is
CH4 (g)+2 O2(g)→CO2(g)+2 H2O (I) ΔH2= -890 kJ
CH4 +2 O2 → CO2 +2 H20
(1mol)+(2mol)→(1mol+2mol)
Methane (CH4) = 16 gm/mol
oxygen (O2) =32 gm/mol
Here 1 mol CH4 ang 2mol of O2 gives 1mol of CO2 and 2 mol of 2 H2O
which generate 882 KJ /mol
Therefore to produce 119341 KJ of energy
119341/882 = 135.3 mol
to produce 119341 KJ of energy, 135.3 mol of CH4 and 270.6 mol of O2 will require
=135.3 *16
=2164.8 gm
=2.1648 kg of CH4
2.1648 kg of CH4 will generate 119341 KJ of energy
I think it’s A I’m not 100% sure but I mean it’s worth a try
<u>Answer</u>:
A solid will melt at the temperature at which the kinetic energy breaks the
inter-molecular attractions.
<u>Explanation</u>:
The melting point is the state at which "a substance changes its temperature from a solid to liquid". At the melting point temperature, there is an equilibrium between the both the solid and the liquid phase. When the solid particle is heated by increasing the temperature the particle in the solid vibrate quickly and it absorbs kinetic energy.
It leads to the breaking of the organisation of particle in between the solid and that leads to the melting of solid. Thus, at the melting point, the kinetic energy breaks the inter-molecular attractions.
Cadium
Down a period, atomic radii decrease from left to right due to the increase in the number of protons and electrons across a period.