The unsaturated zone is the portion of the subsurface above the groundwater table. The soil and rock in this zone contains air as well as water in its pores. ... Unlike the aquifers of the saturated zone below, the unsaturated zone is not a source of readily available water for human consumption
Answer:
<h2>1.9</h2>
Explanation:
The pH of a solution can be found by using the formula
![pH = - log [ {H}^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7BH%7D%5E%7B%2B%7D%20%5D)
From the question we have

We have the final answer as
<h3>1.9</h3>
Hope this helps you
This set up of a conversion table should show you that if you multiply
the grams of BeI2 times .02 moles, it equals <span>5.256 g (your answer) </span>
Answer:
Salt domes result when <u><em>the pressure of overlying rock forces the salt to rise. (Option 2)</em></u>
Explanation:
In geology it is called the gently wavy and rounded relief dome.
Salt has some special properties like rock:
- Salt has a lower specific gravity in relation to a common mineral.
- Salts deform plastically and are very mobile.
- Salts have a high water solubility.
These properties allow, if the pressure is very high, that the salt layers move upwards (due to their lower density). That is, the internal forces produce the elevation of the strata by means of the pressure they exert towards a higher point, generating that the salt looks for its way towards the surface [that is, the salt ascends through the sedimentary layers of the earth's crust, crossing them and deforming them] and causing the bulging structure. The oldest strata are located in the central area of the dome, while the most modern are distributed in the farthest radius. The structure is called salt or diapiro dome, the phenomenon by which it is formed is called diapirism.
Finally, you can say that <u><em>Salt domes result when the pressure of overlying rock forces the salt to rise.</em></u>