<span>Carrier Gas, Flow Controller, Column, Detector, Recorder
</span>First we have a cylinder containing the
carrier gas. From there, the carrier gas goes to the flow controller, which determines
how much carrier gas we are entering into the column (it doesn’t let more gas
pass through). Then, the carrier gas enters the column, which is the most
important part of the device. The sample enters the column from another place:
the injector. Then, the sample and the carrier gas go together across the
column. The interactions between the sample and the column will determine how
fast each sample component goes through the column, and so: which component
gets out earlier. So, at the end, you will have isolated each substance. Then,
each one passes (alone) through the detector, which measures something about
the sample – this information will let you know which substance it is. Finally,
the recorder provides you with the information the detector has found.
Nowadays, the recorder is a computer. In the “stone age” they just used a rudimentary
printer.
Example of an element that has an electron distribution ending in s2p1 is Na or sodium. The complete electron configuration of Na 1s22s22p63s<span>1. </span>Example of an element that has an electron distribution ending in s2d2 is Ca or calcium. The complete electron configuration of Ca is 1s22s22p63s23p64s2.
Na has a one proton over than electrons.so Na makes a Na+
Cl has a one electron overthan protons.so Cl makes a Cl-
proton has a + affectation
electron has a - affectation ..
Answer:
% recovery
MP range of product
mass of product
Explanation:
Liquid–liquid extraction (LLE) is a process of transferring one (or more) solute(s) which are present in a feed solution to another immiscible liquid (solvent). The other solvent that becomes enriched in the target solute(s) is called extract. The original feed solution that is depleted in solute(s) is subsequently referred to as the raffinate.
This method is used to purify compounds and separate mixtures of compounds. This is very important when we want to isolate a product from a reaction mixture.
The percent recovery is the amount of solute that is transferred to the extract. This is the most important data to be recorded in an LLE experiment.
The melting point range necessarily helps us to identify the product and the mass of solid tells us the quantity of the solid obtained after extraction.