Answer:From whom should a departing VFR aircraft request radar traffic information during ground operations? ... Answer: Sequencing to the primary Class C airport, traffic advisories, conflict resolution, and safety alerts.
Explanation:
Answer:
471392.4 N
Explanation:
From the question,
Just before contact with the beam,
mgh = Fd.................... Equation 1
Where m = mass of the beam, g = acceleration due to gravity, h = height. F = average Force on the beam, d = distance.
make f the subject of the equation
F = mgh/d................ Equation 2
Given: m = 1900 kg, h = 4 m, d = 15.8 = 0.158 m
Constant: g = 9.8 m/s²
Substitute into equation 2
F = 1900(4)(9.8)/0.158
F = 471392.4 N
Answer:
a) A1 = 
b) A1 = 2.688 cm
c) Q1 = A1 x v1
d) v1 = 3.1994 m/s
e) A2 = 
f) A2 = 0.7963cm
Explanation:
a) Area = 
r = 
thus,
area = 
A1 = ![\frac{\pi (d1)^{2} }{4}[/tex]b) d1 = 1.85 cmsubstituting in the above equation,A1 = [tex]\frac{\pi (d1)^{2} }{4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%20%28d1%29%5E%7B2%7D%20%7D%7B4%7D%5B%2Ftex%3C%2Fstrong%3E%5D%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3Eb%29%20d1%20%3D%201.85%20cm%3C%2Fp%3E%3Cp%3Esubstituting%20in%20the%20above%20equation%2C%3C%2Fp%3E%3Cp%3EA1%20%3D%20%20%5Btex%5D%5Cfrac%7B%5Cpi%20%28d1%29%5E%7B2%7D%20%7D%7B4%7D)
A1 = 
A1 = 2.688 cm
c) Flow rate = Area x velocity ( refer brainly.com/question/13997998)
Q1 = A1 x v1
d) From the above equation,
v1 =
=
= 319.94 cm/s = 3.1994 m/s
e) Since the flow rate Q1 is constant throughout the hose, Av is a constant.
i.e. A1 x v1 = A2 x v2
thus,
A2 = 
f) v2 = 10.8 m/s.
substituting the values in the above equation,
A2 =
= 0.7963cm
Both masses will have the same acceleration. The cart accelerates to the right with a magnitude of 4.9 m/
. The correct answer is 4.90 m/
Given that a massless string connects a 1.00 kg mass to a 3.00 kg cart which is resting on a frictionless horizontal surface.
Let M = 1kg and m = 3 kg
Since the horizontal surface is frictionless, the tension in the string will be the same. when the mass is hanged over a frictionless pulley, the tension will also be the same.
When the mass is released, the cart accelerates to the right can be calculated from Newton' second law of motion. That is,
M( g + a) = m(g - a)
1(9.8 + a) = 3( 9.8 - a)
9.8 +a = 29.4 - 3a
collect the like terms
4a = 19.6
a = 19.6/4
a = 4.9 m/
Therefore, the cart accelerates to the right with a magnitude of 4.9 m/
. The correct answer is 4.90 m/
Learn more about dynamics here: brainly.com/question/24994188