Answer:
not
Step-by-step explanation:
![\left[\begin{array}{ccc}-2&4\\1&3\end{array}\right] *\left[\begin{array}{ccc}-2&1\\3&7\end{array}\right]=](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%264%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D%20%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%261%5C%5C3%267%5Cend%7Barray%7D%5Cright%5D%3D)
First is A and Second is B
Let's find A*B
![\left[\begin{array}{ccc}-2(-2)+4*3&-2*1+4*7\\1(-2)+3*3&1*1+3*7\end{array}\right] =\left[\begin{array}{ccc}16&26\\7&22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%28-2%29%2B4%2A3%26-2%2A1%2B4%2A7%5C%5C1%28-2%29%2B3%2A3%261%2A1%2B3%2A7%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D16%2626%5C%5C7%2622%5Cend%7Barray%7D%5Cright%5D)
b)
![\left[\begin{array}{ccc}-2&1\\3&7\end{array}\right] \left[\begin{array}{ccc}-2&4\\1&3\end{array}\right] =](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%261%5C%5C3%267%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%264%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D%20%3D)
Now let's find B*A
![\left[\begin{array}{ccc}-2(-2)+1*1&-2*4+1*3\\3(-2)+7*1&3*4+7*3\end{array}\right] =\left[\begin{array}{ccc}5&-5\\1&23\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%28-2%29%2B1%2A1%26-2%2A4%2B1%2A3%5C%5C3%28-2%29%2B7%2A1%263%2A4%2B7%2A3%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-5%5C%5C1%2623%5Cend%7Barray%7D%5Cright%5D)
c) They are not
Answer:
3
Step-by-step explanation:
Use the Pythagorean Theorem.
=
+
1369=
+100
-100 -100
1269=
=
3
=x
Answer:

Step-by-step explanation:
we know that
The standard equation of a horizontal parabola is equal to

where
(h,k) is the vertex
(h+p,k) is the focus
In this problem we have
(h,k)=(0,0) ----> vertex at origin
(h+p,k)=(-4,0)
so
h+p=-4
p=-4
substitute the values


Answer: 13095238095/100000000000
Step-by-step explanation: To write 0.13095238095 as a fraction you have to write 0.13095238095 as numerator and put 1 as the denominator. Now you multiply numerator and denominator by 10 as long as you get in numerator the whole number.
0.13095238095 = 0.13095238095/1 = 1.3095238095/10 = 13.095238095/100 = 130.95238095/1000 = 1309.5238095/10000 = 13095.238095/100000 = 130952.38095/1000000 = 1309523.8095/10000000 = 13095238.095/100000000 = 130952380.95/1000000000 = 1309523809.5/10000000000 = 13095238095/100000000000