Answer:
E = 16.464 J
Explanation:
Given that,
Mass of tetherball, m = 0.8 kg
It is hit by a child and rises 2.1 m above the ground, h = 21. m
We need to find the maximum gravitational potential energy of the ball. The formula for the gravitational potential energy is given by :
E = mgh
g is acceleration due to gravity
E = 0.8 kg × 9.8 m/s² × 2.1 m
= 16.464 J
So, the maximum potential energy of the ball is 16.464 J.
weight less on moon than on earth.
high on lift off - G force
low in orbit.
zero at a point between earth and moon
Answer:
time rising = 34 / 9.8 = 3.47 sec
total time in air = 2 * 3.47 sec = 6.94 sec
(time rising must equal time falling)
R = 17 m/s * 6.94 s = 118 m
Can also use range formula
R = v^2 sin (2 theta) / g
tan theta = 34 / 17 = 2
theta = 63.4 deg
2 theta = 126.9 deg
sin 126.9 = .8
v^2 = 17^2 + 34^2 = 1445 m^2/s^2
R = 1445 * .8 / 9.8 = 118 m agreeing with answer found above
Fhfjhfjikauijpoejfdjkkjff\
Answer:
The correct answer is theory of general relativity.
Explanation:
According to the statement of equivalence the gravitational mass force on an object standing on the surface of earth is same as the pseudo force that acts on it if it accelerated at acceleration equal to acceleration due to gravity.
According to Einestine both the forces are indistinguishable as both the forces produce same effects. Thus both are equivalent and thus gravity is a phenomenon that can be analysed in a radically different way which gives some strange results such as bending of light, existence of black holes,e.t.c