(a) The system of interest if the acceleration of the child in the wagon is to be calculated are the wagon and the children outside the wagon.
(b) The acceleration of the child-wagon system is 0.33 m/s².
(c) Acceleration of the child-wagon system is zero when the frictional force is 21 N.
<h3>
Net force on the third child</h3>
Apply Newton's second law of motion;
∑F = ma
where;
- ∑F is net force
- m is mass of the third child
- a is acceleration of the third child
∑F = 96 N - 75 N - 12 N = 9 N
Thus, the system of interest if the acceleration of the child in the wagon is to be calculated are;
- the wagon
- the children outside the wagon
<h3>Free body diagram</h3>
→ → Ф ←
1st child friction wagon 2nd child
<h3>Acceleration of the child and wagon system</h3>
a = ∑F/m
a = 9 N / 27 kg
a = 0.33 m/s²
<h3>When the frictional force is 21 N</h3>
∑F = 96 N - 75 N - 21 N = 0 N
a = ∑F/m
a = 0/27 kg
a = 0 m/s²
Learn more about net force here: brainly.com/question/14361879
#SPJ1
Answer:
BC and DE
Explanation:
In the given figure, the velocity time graph is shown. We know that the area under v-t curve gives the displacement of the particle.
Area under AB, 
Area under BC, 
Area under CD, 
Area under DE, 
Area under EF, 
So, form above calculations it is clear that, during BC and DE undergo equal displacement. Hence, the correct option is (c) "BC and DE = 4 meters".
Answer:
The manufacturer of a 9V dry-cell flashlight battery says that the battery will deliver 20 mA for 80 continuous hours. During that time the voltage will drop from 9V to 6V. Assume the drop in voltage is linear with time. How much energy does the battery deliver in this 80 h interval?
Explanation:
<span>there is no horizontal displacement if he went straight up
straight up means vertical, so his vertical displacment is 20 m</span>
I think the answer would be: The G-note's wavelength is longer
Here are the formula to calculate wavelength
Wavelength = Wave speed/Frequency
Which indicates that the wavelength will become larger as the frequency became smaller.