Answer:
The percentage composition of each element in H2O2 is 5.88% H and 94.12% O (Option D).
Explanation:
Step 1: Data given
Molar mass of H = 1.0 g/mol
Molar mass of O = 16 g/mol
Molar mass of H2O2 = 2*1.0 + 2*16 = 34.0 g/mol
Step 2: Calculate % hydrogen
% Hydrogen = ((2*1.0) / 34.0) * 100 %
% hydrogen = 5.88 %
Step 3: Calculate % oxygen
% Oxygen = ((2*16)/34)
% oxygen = 94.12 %
We can control this by the following equation
100 % - 5.88 % = 94.12 %
The percentage composition of each element in H2O2 is 5.88% H and 94.12% O (Option D).
Mr. Jones's prescription calls for 1.04 tablets per day. Based on this information, how many tablets should Mr. Jones take per day? a) 1.25 O b) 1.5 c) 1 O d) 2
For Ar :
1 mol ------------ 22.4 L ( at STP )
7.6 mol ---------- x L
x = 7.6 * 22.4
x = 170.24 L
-----------------------------------------------------------------
For C2H3:
1 mol ------------ 22.4 ( at STP)
0.44 mol --------- y L
y = 0.44 * 22.4
y = 9.856 L
hope this helps !.
Answer:
Proteins and nucleic acids
Explanation:
Nitrogen compounds in animals that are no longer of use, or are in access are excreted from the animals body, and are thus called nitrogenous waste. These nitrogenous waste can be excreted in three different ways.
1. Ammonia
2. Urea
3. Uric acid
Since we already have the balanced equation, we know that the ratio between
is
respectively.
So then we can set up a proportion to find the number of moles produced when 2.90 moles of Na react completely:

Then we cross multiply and solve for x:


Therefore, we know that when 2.90 moles of Na react completely, there are 1.45 moles of
that are produced.