Answer:
yes
Step-by-step explanation:
Simplifying then comparing both terms 0.3and 0.15, 0.3 is greater than
0.15, which means that the first term is greater than the second term.
Answer:
wait.. almost done...
Step-by-step explanation:
Given the function, <em>f(x) = 3x + 6,</em> we can solve for f(a), f(a + h) and
by substituting their values into f(x) = 3x + 6. We will have the following:
![\mathbf{f(a) = 3a + 6}\\\\\mathbf{f(a + h) = 3a + 3h + 6}\\\\\mathbf{\frac{(f(a + h) - f(a)) }{h} = 6}](https://tex.z-dn.net/?f=%5Cmathbf%7Bf%28a%29%20%3D%203a%20%2B%206%7D%5C%5C%5C%5C%5Cmathbf%7Bf%28a%20%2B%20h%29%20%3D%203a%20%2B%203h%20%2B%206%7D%5C%5C%5C%5C%5Cmathbf%7B%5Cfrac%7B%28f%28a%20%2B%20h%29%20-%20f%28a%29%29%20%7D%7Bh%7D%20%3D%206%7D)
<em><u>Given:</u></em>
<em>We are told to find:</em>
- f(a)
- f(a + h), and
![\frac{(f(a + h) - f(a)) }{h}](https://tex.z-dn.net/?f=%5Cfrac%7B%28f%28a%20%2B%20h%29%20-%20f%28a%29%29%20%7D%7Bh%7D)
1. <em><u>Find f(a):</u></em>
- Substitute x = a into f(x) = 3x + 6
f(a) = 3(a) + 6
f(a) = 3a + 6
<em>2. Find f(a + h):</em>
- Substitute x = a + h into f(x) = 3x + 6
f(a + h) = 3(a + h) + 6
f(a + h) = 3a + 3h + 6
<em>3. Find </em>
<em>:</em>
- Plug in the values of f(a + h) and f(a) into
![\frac{(f(a + h) - f(a)) }{h}](https://tex.z-dn.net/?f=%5Cfrac%7B%28f%28a%20%2B%20h%29%20-%20f%28a%29%29%20%7D%7Bh%7D)
Thus:
![\frac{((3a + 3h + 6) - (3a + 6)) }{h}\\\\\frac{(3a + 3h + 6 - 3a - 6) }{h}\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B%28%283a%20%2B%203h%20%2B%206%29%20-%20%283a%20%2B%206%29%29%20%7D%7Bh%7D%5C%5C%5C%5C%5Cfrac%7B%283a%20%2B%203h%20%2B%206%20-%203a%20-%206%29%20%7D%7Bh%7D%5C%5C%5C%5C)
![\frac{(3a - 3a + 3h + 6 - 6) }{h}\\\\= \frac{3h }{h}\\\\\mathbf{= 3}](https://tex.z-dn.net/?f=%5Cfrac%7B%283a%20-%203a%20%2B%203h%20%2B%206%20-%206%29%20%7D%7Bh%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B3h%20%7D%7Bh%7D%5C%5C%5C%5C%5Cmathbf%7B%3D%203%7D)
Therefore, given the function, <em>f(x) = 3x + 6,</em> we can solve for f(a), f(a + h) and
by substituting their values into f(x) = 3x + 6. We will have the following:
![\mathbf{f(a) = 3a + 6}\\\\\mathbf{f(a + h) = 3a + 3h + 6}\\\\\mathbf{\frac{(f(a + h) - f(a)) }{h} = 6}](https://tex.z-dn.net/?f=%5Cmathbf%7Bf%28a%29%20%3D%203a%20%2B%206%7D%5C%5C%5C%5C%5Cmathbf%7Bf%28a%20%2B%20h%29%20%3D%203a%20%2B%203h%20%2B%206%7D%5C%5C%5C%5C%5Cmathbf%7B%5Cfrac%7B%28f%28a%20%2B%20h%29%20-%20f%28a%29%29%20%7D%7Bh%7D%20%3D%206%7D)
Learn more here:
brainly.com/question/8161429
If you would like to simplify <span>(-2)-3 -8 - 8 and 6x - 2, you can do this using the following steps:
</span><span>(-2)-3 -8 - 8 = - 2 - 3 - 8 - 8 = - 5 - 8 - 8 = - 13 - 8 = - 21
6x - 2 = 2 * (3x - 1)
The correct result would be - 21 and </span><span>2 * (3x - 1).</span>
The domain and inverse of the function
is
Domain =
,
![r^{-1}(x) = \pm \sqrt{\frac{11}{x}} + 4](https://tex.z-dn.net/?f=r%5E%7B-1%7D%28x%29%20%3D%20%5Cpm%20%5Csqrt%7B%5Cfrac%7B11%7D%7Bx%7D%7D%20%2B%204)
What is a function?
A function from A to B is a rule that assigns to each element of A a unique element of B. A is called the domain of the function and B is called the codomain of the function.
There are different operations on functions like addition, subtraction, multiplication, division and composition of functions.
The given function is
![r(x) = \frac{11}{(x - 4)^2}](https://tex.z-dn.net/?f=r%28x%29%20%3D%20%5Cfrac%7B11%7D%7B%28x%20-%204%29%5E2%7D)
r(x) is not defined if x - 4 = 0
r(x) is not defined for x = 4
Domain =
,
Where
is the set of all real number
Let r(x) = y
![\frac{11}{(x-4)^2} = y\\(x - 4)^2 = \frac{11}{y}\\x - 4 = \pm \sqrt{\frac{11}{y}}\\x = \pm\sqrt{\frac{11}{y}} +4](https://tex.z-dn.net/?f=%5Cfrac%7B11%7D%7B%28x-4%29%5E2%7D%20%3D%20y%5C%5C%28x%20-%204%29%5E2%20%3D%20%5Cfrac%7B11%7D%7By%7D%5C%5Cx%20-%204%20%3D%20%5Cpm%20%5Csqrt%7B%5Cfrac%7B11%7D%7By%7D%7D%5C%5Cx%20%3D%20%5Cpm%5Csqrt%7B%5Cfrac%7B11%7D%7By%7D%7D%20%20%2B4)
<em />![r^{-1}(x) = \pm \sqrt{\frac{11}{x}} + 4](https://tex.z-dn.net/?f=r%5E%7B-1%7D%28x%29%20%3D%20%5Cpm%20%5Csqrt%7B%5Cfrac%7B11%7D%7Bx%7D%7D%20%2B%204)
To learn more about function, refer to the link:
brainly.com/question/22340031
#SPJ4