Answer:
v = 40 m / s
Explanation:
Let's use the expressions for accelerated motion
v = v₀ + a t
where vo is the initial velocity, at the acceleration and t is the time.
as the body starts from rest its initial velocity is zero
v = 0 + at
let's calculate
v = 8 5
v = 40 m / s
Answer:
Choice a. 1 kg, assuming that all other forces on the object (if any) are balanced.
Explanation:
By Newton's Second Law,
,
where
is the acceleration of the object in
,
is the net force on the object in Newtons, and
is the mass of the object in kilograms.
As a result,
.
Assume that all other forces on this object are balanced. The net force on the object will be
. The net force is constant. Acceleration should also be constant and the same as the average acceleration in the two seconds.
<h3>What is the
average acceleration of this object?</h3>
.
.
<h3>Apply Newton's Second Law to find the mass of the object.</h3>
.
All Mountains are built through a general process called "deformation" of the crust of the Earth. Deformation is a fancy word which could also mean "folding". An example of this kind of folding comes from the process described below.
<span>When two sections of the Earth's lithosphere collide, rather than being subducted, where one slab of lithosphere is forced down to deeper regions of the Earth, the slabs pile into each other, causing one or both slabs can fold up like an accordion. This process elevates the crust, folds and deforms it heavily, and produces a mountain range. Mountain building and mantle subduction usually go together. </span>
When you keep raisin in water and the raisin gets puffed.
Movement of salt-water in animal cell across our cell membrane.
Answer:
See below explanation
Explanation:
The correspondent chemical reaction for copper carbonate decomposed by heat is:
CuCO₃ (s) → CuO (s) + CO₂ (g)
Considering all molar mass (MM) for each element ( we consider rounded numbers) :
MM CuCO₃ = 123 g/mol
MM CuO = 79 g/mol
MM CO₂ = 44 g/mol
Statement mentions that scientis heated 123.6 g of CuCO₃ (almost a MM), until a black residue is obtained, which weights 79.6 g : this solid residue is formed by CuO, and the remaining mass (approximatelly 44 g) belongs to teh second product, this is, CO₂; as it is a gas compund, it is not certainly included on the solid residue.
So, law of conservation mass is true for this case, since: 123.6 g = 79.6 g + 44 g. As explained, on the solid residue, we don not include the 44 g, which "escaped" from our system, since it is a gas compound (CO₂)