Answer:
The initial speed of bullet is "164 m/s".
Explanation:
The given values are:
mass of bullet,

or,

mass of wooden block,

speed,

Coefficient of kinetic friction,

As we know,
The Kinematic equation is:
⇒ 
then,
Initial velocity will be:
⇒ 

On substituting the given values, we get
⇒ 


As we know,
The conservation of momentum is:
⇒ 
or,
⇒ Initial speed, 
On substituting the values, we get
⇒ 
⇒ 
⇒
Answer:

Explanation:
Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.
.
Now, let's use the ideal gas equation to the initial and the final state:

Let's recall that the term nR is a constant. That is why we can match these equations.
We can find a relation between the volumes of the initial and the final state.

Combining this equation with the first equation we have:


Now, we just need to solve this equation for T₂.

Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.
Here,
Finally, T2 will be:

Answer:
Distance, d = 112.5 meters
Explanation:
Initially, the bicyclist is at rest, u = 0
Final speed of the bicyclist, v = 30 m/s
Acceleration of the bicycle, 
Let s is the distance travelled by the bicyclist. The third equation of motion is given as :



s = 112.5 meters
So, the distance travelled by the bicyclist is 112.5 meters. Hence, this is the required solution.
I think you can google this because I really don’t know the answer I’m so sorry
The moon's orbital and rotational periods are identical or the same, I<span>ts rate of spin is done in unison with its rate of revolution (the time that is needed to complete one orbit). Thus, the moon rotates exactly once every time it circles the Earth.</span>