The rate of disappearance of chlorine gas : 0.2 mol/dm³
<h3>Further explanation</h3>
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
For reaction :

The rate reaction :
![\tt -\dfrac{1}{a}\dfrac{d[-A]}{dt}= -\dfrac{1}{b}\dfrac{d[-B]}{dt}=\dfrac{1}{c}\dfrac{d[C]}{dt}=\dfrac{1}{d}\dfrac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctt%20-%5Cdfrac%7B1%7D%7Ba%7D%5Cdfrac%7Bd%5B-A%5D%7D%7Bdt%7D%3D%20-%5Cdfrac%7B1%7D%7Bb%7D%5Cdfrac%7Bd%5B-B%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7Bc%7D%5Cdfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7Bd%7D%5Cdfrac%7Bd%5BD%5D%7D%7Bdt%7D)
Reaction for formation CCl₄ :
<em>CH₄+4Cl₂⇒CCl₄+4HCl</em>
<em />
From equation, rate of reaction = rate of formation CCl₄ = 0.05 mol/dm³
Rate of formation of CCl₄ = reaction rate x coefficient of CCCl₄
0.05 mol/dm³ = reaction rate x 1⇒reaction rate = 0.05 mol/dm³
The rate of disappearance of chlorine gas (Cl₂) :
Rate of disappearance of Cl₂ = reaction rate x coefficient of Cl₂
Rate of disappearance of Cl₂ = 0.05 x 4 = 0.2 mol/dm³
They are all equal to one mole (all of the above).
Answer:
No
Explanation:
given that, enthalpy is a state function, that means it depends only on the initial and final states, there is no difference between the enthalpy of a phase transition versus the enthalpy of a heating or cooling process, when the cooling or heating process finish in a change of phase.
It does not matter which way we take to cool or heat the substances the Enthalpy of this process will be the same.
Answer:vapor
Explanation: Because it is
Answer:
Explanation:
The amine functional group is obtained by subsititution of one or more hydrogen atoms in the ammonia compound.
Ammonia is NH₃.
Then,
- by substituting one hydrogen you obtain R - NH₂.
- by substituting two hydrogens you obtain R' - NH - R''
- by subsituting the three hydrogens you obtain:
R'''
|
R' - N - R''
In this case, the three subsitutuents are silyl groups. The silyl group is derived form silane and is SiH₃. So, the tcompound <em>trisilylamine</em> is:
SiH₃
|
SiH₃ - N - SiH₃
Thus, you can count 3 hydrogen atoms for every silylgroup for a total of <u><em>9 hydrogen atoms in each molecule of trisilylamine.</em></u>