Answer:
0.79 g
Explanation:
Let's introduce a strategy needed to solve any similar problem like this:
- Apply the mass conservation law (assuming that this reaction goes 100 % to completion): the total mass of the reactants should be equal to the total mass of the products.
Based on the mass conservation law, we need to identify the reactants first. Our only reactant is sodium bicarbonate, so the total mass of the reactants is:

We have two products formed, sodium carbonate and carbonic acid. This implies that the total mass of the products is:

Apply the law of mass conservation:

Substitute the given variables:

Rearrange for the mass of carbonic acid:

Answer:
(3) NaNO₃
Step-by-step explanation:
Sodium nitrate has ionic bonds, because it consists of Na⁺ and NO₃⁻ ions.
However, the nitrate ions have <em>covalent bonds</em> between the O atoms and the central N atoms.
(1) and (2) are <em>wrong</em>. Both N₂O₅ and HCl consist of nonmetals, so they are <em>covalent</em> compounds.
(4) is <em>wrong</em>. NaCl has <em>only ionic bonds</em> between the Na⁺ and Cl⁻ ions
The wording of your question doesn't quite make sense, but a mole of an element has the same mass in grams as a single atom of that element has in amu. The mole is defined as 6.02 x10^22 things, whether they be atoms or molecules or even moles! 6.02x10^22 atoms of carbon has a mass of 12.01 g, and a single atom of carbon has a mass of 12.01 amu. Hope this helps!
Answer:
The correct option is B
Explanation:
One of the claims of John Dalton's atomic theory is that atom is the smallest unit of matter (which suggests that there are no particles smaller than an atom in any matter). This claim has been disproved by the modern atomic theory which established that there are particles smaller than atom (called subatomic particles). These particles are electrons, protons and neutrons.
One of the modern atomic theory was by Neils Bohr, who proposed that <u>electrons move in circular orbits around the central nucleus</u>. Thus, the electrons of iron can also be said to be present in a region of space (circular path) around the nucleus. This proves that option B is the correct option as John Dalton's theory did not even recognize the electron(s) nor the nucleus.