It respresents the higher energy level than 627nm .
<h3>What is a emission line ? </h3>
Emission lines are the glowing hot gas emits lines of light whereas absorption line refers to the tendency of cool atmospheric gas to absorb the same line of light.Some lights produce dark band when the light passes through gas in the atmosphere . There are two line spectrum and absorption.
spectrum is an excitement of electrons from lower to higher energy levels and when it comes back it releases energy in the terms of colourful lights .
It represents the higher energy levels than 627nm because Energy is inversly proportional to wavelength .
to learn more about Emission lines click here
brainly.com/question/28184999
#SPJ9
34g C * ( 1 mol / 12.0107 ) * ( 1 mol H2 / 1 mol C ) * ( <span>2.01588 g / 1 mol H2 ) = 5.70657164028741 g H2 = 5.7 g H2
Convert grams of C to moles of C using the given amount of grams and the molar mass ( 12.0107 g/mol ).
Gather the mole ratio from the coefficients in the balanced equation and multiply by the ratio.
Convert moles of H2 to grams of H2 </span> using the given amount of grams and the molar mass ( 2.01588 g/mol )<span>.
Revise your answer to have the correct number of significant figures. </span>
The final temperature of the lead-water system will be lower than the final temperature of the copper-water system.
Answer:
46.0g of Iron are produced
Explanation:
Based on the chemical reaction:
FeO(l) + Mg(l) → Fe(l) + MgO(s)
<em>1 mole of Iron (II) oxide reacts per mole of Mg to produce 1 mole of iron</em>
<em />
To solve this question we need to convert each mass of reactant to moles using its respectives molar masses in order to find limitng reactant. Moles of limiting reactant = Moles of iron produced:
<em>Moles FeO (Molar mass: 71.85g/mol):</em>
80.0g * (1mol / 71.85g) = 1.11moles FeO
<em>Moles Mg (Molar mass: 24.305g/mol)</em>
20.0g * (1mol / 24.305g) = 0.823 moles Mg
As moles of Mg < Moles FeO, Mg is limiting reactant and the moles of Fe are 0.823 moles.
The mass of Iron produced is:
0.823 moles Fe * (55.845g/mol) =
46.0g of Iron are produced