The maximum value of θ of such the ropes (with a maximum tension of 5,479 N) will be able to support the beam without snapping is:
We can apply the first Newton's law in x and y-direction.
If we do a free body diagram of the system we will have:
x-direction
All the forces acting in this direction are:
(1)
Where:
- T(1) is the tension due to the rope 1
- T(2) is the tension due to the rope 2
Here we just conclude that T(1) = T(2)
y-direction
The forces in this direction are:
(2)
Here W is the weight of the steel beam.
We equal it to zero because we need to find the maximum angle at which the ropes will be able to support the beam without snapping.
Knowing that T(1) = T(2) and W = mg, we have:
T(1) must be equal to 5479 N, so we have:
Therefore, the maximum angle allowed is θ = 37.01°.
You can learn more about tension here:
brainly.com/question/12797227
I hope it helps you!
Answer:
Acceleration, in m/s, of such a rock fragment =
Explanation:
According to Newton's Third Equation of motion
Where:
is the final velocity
is the initial velocity
a is the acceleration
s is the distance
In our case:
So Equation will become:
Acceleration, in m/s, of such a rock fragment =
Answer:
Speed of the car 1 =
Speed of the car 2 =
Explanation:
Given:
Mass of the car 1 , M₁ = Twice the mass of car 2(M₂)
mathematically,
M₁ = 2M₂
Kinetic Energy of the car 1 = Half the kinetic energy of the car 2
KE₁ = 0.5 KE₂
Now, the kinetic energy for a body is given as
where,
m = mass of the body
v = velocity of the body
thus,
or
or
or
or
or
.................(1)
also,
or
or
or
or
or
or
or
or
and, from equation (1)
Hence,
Speed of car 1 =
Speed of car 2 =