1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nitella [24]
3 years ago
11

600 J of work is done on a system in a process that decreases the thermal energy of the system by 300 J.

Physics
1 answer:
Daniel [21]3 years ago
6 0

Answer:

900 J

Explanation:

\Delta U = Change in entropy = -300 J (Decrease)

W = Work done = 600 J

Q = Heat transferred

Change in internal energy is given by

\Delta U=W+Q\\\Rightarrow Q=\Delta U-W\\\Rightarrow Q=-300-600\\\Rightarrow Q=-900\ J

The heat transferred to or from the system as heat is -900 J.

900 J is transferred. As heat is transferred from the system the sign is negative.

You might be interested in
PLEASSE HELP WILL MARK BRAINLIEST!!!!!!!!!!
faust18 [17]
They are halogen elements, or nonmetallic elements in the same GROUP, specifically group 17
6 0
3 years ago
The color of light most readily absorbed by water is _________.
zheka24 [161]

answer is the color white

3 0
3 years ago
A spring stretches 0.150 m when a 0.30 kg mass is hung from it. The spring is then stretched an additional 0.100 m from this equ
DochEvi [55]

Answer:

a)  k=19.6N/m

b)  V_m=0.81m/s

c)  a_m=6.561m/s^2

d)  K.E=0.096J

e)  T=0.78sec &F=1.29sec

f)   mx'' + kx' =0

Explanation:

From the question we are told that:

Stretch Length L=0.150m

Mass m=0.30kg

Total stretch lengthL_t=0.150+0.100=>0.25

a)

Generally the equation for Force F on the spring is mathematically given by

F=-km\\\\k=F/m\\\\k=\frac{m*g}{x}\\\\k=\frac{0.30*9.8}{0.15}

k=19.6N/m

b)Generally the equation for Max Velocity of Mass on the spring is mathematically given by

V_m=A\omega

Where

A=Amplitude

A=0.100m

And

\omega=angulat Velocity\\\\\omega=\sqrt{\frac{k}{m}}\\\\\omega=\sqrt{\frac{19.6}{0.3}}\\\\\omega=8.1rad/s

Therefore

V_m=A\omega\\\\V_m=8.1*0.1

V_m=0.81m/s

c)

Generally the equation for Max Acceleration of Mass on the spring is mathematically given by

a_m=\omega^2A

a_m=8.1^2*0.1

a_m=6.561m/s^2

d)

Generally the equation for Total mechanical energy of Mass on the spring is mathematically given by

K.E=\frac{1}{2}mv^2

K.E=\frac{1}{2}*0.3*0.8^2

K.E=0.096J

e)

Generally the equation for  the period T is mathematically given by

\omega=\frac{2\pi}{T}

T=\frac{2*3.142}{8.1}

T=0.78sec

Generally the equation for  the Frequency is mathematically given by

F=\frac{1}{T}

F=1.29sec

f)

Generally the Equation of time-dependent vertical position of the mass is mathematically given by

mx'' + kx' =0

Where

'= signify order of differentiation

7 0
3 years ago
Students perform a set of experiments by placing a block of mass m against a spring, compressing the spring a distance x along a
Verizon [17]

Increasing the angle of inclination of the plane decreases the velocity of the block as it leaves the spring.

  • The statement that indicates how the relationship between <em>v</em> and <em>x</em> changes is;<u> As </u><u><em>x</em></u><u> increases, </u><u><em>v</em></u><u> increases, but the relationship is no longer linear and the values of </u><u><em>v</em></u><u> will be less for the same value of </u><u><em>x</em></u><u>.</u>

Reasons:

The energy given  to the block by the spring = \mathbf{0.5  \cdot k  \cdot x^2}

According to the principle of conservation of energy, we have;

On a flat plane, energy given to the block = 0.5  \cdot k  \cdot x^2 = kinetic energy of

block = 0.5  \cdot m  \cdot v^2

Therefore;

0.5·k·x² = 0.5·m·v²

Which gives;

x² ∝ v²

x ∝ v

On a plane inclined at an angle θ, we have;

The energy of the spring = \mathbf{0.5  \cdot k  \cdot x^2}

  • The force of the weight of the block on the string, F = m \cdot g  \cdot sin(\theta)

The energy given to the block = 0.5 \cdot k \cdot x^2 - m \cdot g  \cdot sin(\theta) = The kinetic energy of block as it leaves the spring = \mathbf{0.5  \cdot m  \cdot v^2}

Which gives;

0.5 \cdot k \cdot x^2 - m \cdot g  \cdot sin(\theta) = 0.5  \cdot m  \cdot v^2

Which is of the form;

a·x² - b = c·v²

a·x² + c·v² = b

Where;

a, b, and <em>c</em> are constants

The graph of the equation a·x² + c·v² = b  is an ellipse

Therefore;

  • As <em>x</em> increases, <em>v</em> increases, however, the value of <em>v</em> obtained will be lesser than the same value of <em>x</em> as when the block is on a flat plane.

<em>Please find attached a drawing related to the question obtained from a similar question online</em>

<em>The possible question options are;</em>

  • <em>As x increases, v increases, but the relationship is no longer linear and the values of v will be less for the same value of x</em>
  • <em>The relationship is no longer linear and v will be more for the same value of x</em>
  • <em>The relationship is still linear, with lesser value of v</em>
  • <em>The relationship is still linear, with higher value of v</em>
  • <em>The relationship is still linear, but vary inversely, such that as x increases, v decreases</em>

<em />

Learn more here:

brainly.com/question/9134528

6 0
2 years ago
ASAP! State the direction of<br> the oscillation of a<br> longitudinal wave??<br> Worth 40 P! ASAP!
Liula [17]

In a longitudinal wave the particle displacement is parallel to the direction of wave propagation. ... The particles do not move down the tube with the wave; they simply oscillate back and forth about their individual equilibrium positions.Answer:

Explanation:

7 0
3 years ago
Other questions:
  • (a) Calculate the magnitude of the gravitational force exerted by Mars on a 67 kg human standing on the surface of Mars. (The ma
    8·1 answer
  • Can someone help me with this please
    10·1 answer
  • What season is when the sun is least concentrated at the beginning of the season?
    12·2 answers
  • If the torque required to loosen a nut on a wheel has a magnitude of 40.0 N·m and the force exerted by a mechanic is 133 N, how
    5·1 answer
  • A rotating wheel requires a time Δt = [01]_____________________ to rotate 37.0 revolutions. Its angular speed at the end of the
    10·1 answer
  • If a force of 24 N is applied to an object with a mass of 5 kg, the object will accelerate at _____ m/s2
    12·1 answer
  • What is the purpose of doing the whole body stretch from head to toe?
    8·1 answer
  • How do greenhouse gasses and fossil fuse have an impact on the earth?
    5·1 answer
  • Two skydivers of different masses jump from a plane. explain how their falls compare, including the effects of gravity, mass, an
    5·1 answer
  • When the resistance of a circuit is doubled, and no other changes occur, what effect does this have on this current in the circu
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!