There are 1,000,000 micro seconds in one second so multiple 136.8 by 1000000 and you'll get 136,800,000 Tera calculations per second.
List out all the variables that you do know;
acceleration=-9.8 ms⁻¹ (this remains constant on Earth)
Final velocity=?
Displacement (s)= -2.1 m
Initial Velocity(u)=2.5 ms⁻¹
v²=u²+2as
v²=(2.5)²+2(-9.8)(-2.1)
v²=47.41
v=√47.41
v=6.88549 ≈ 6.9 ms⁻¹
Hope I helped :)
Answer:
Explanation:
ASSUMING that block = sled AND that the rope is parallel to the slope.
The force acting parallel due to the weight is
13.6(9.81)sin35.5 = 77.475 N
The maximum friction force is
(0.45)13.6(9.81)cos35.5 = 48.877 N
If rope tension is T
77.475 - 48.877 < T < 77.475 + 48.877
28.6 N < T < 126 N
28.6 N will occur if the block is on the verge of sliding downhill
126 N will occur if the block is on the verge of sliding uphill
Could be any value between them.
Answer
is: V<span>an't
Hoff factor (i) for this solution is 1,81.
Change in freezing point from pure solvent to
solution: ΔT =i · Kf · b.
Kf - molal freezing-point depression constant for water is 1,86°C/m.
b - molality, moles of solute per
kilogram of solvent.
</span><span>b = 0,89 m.
ΔT = 3°C = 3 K.
i = </span>3°C ÷ (1,86 °C/m · 0,89 m).
i = 1,81.