Here's the tool you need. You can't answer the question without this:
"1 watt"
means
"1 joule of energy, generated, used, or moved, every second".
So 60 watts = 60 joules per second
Total energy generated,
used, or moved = (power) x (time).
580 joules = (60 watts) x (time)
Divide each side
by (60 watts): Time = (580 joules) / (60 joules/sec)
= (9 and 2/3) seconds .
Answer:
power =( 890 N x 12 m ) / 22 s=
= 485 Watts
Explanation:
Answer:
1.1775 x 10^-3 m^3 /s
Explanation:
viscosity, η = 0.250 Ns/m^2
radius, r = 5 mm = 5 x 10^-3 m
length, l = 25 cm = 0.25 m
Pressure, P = 300 kPa = 300000 Pa
According to the Poisuellie's formula
Volume flow per unit time is


V = 1.1775 x 10^-3 m^3 /s
Thus, the volume of oil flowing per second is 1.1775 x 10^-3 m^3 /s.
Answer:
-2.67 m/s²
Explanation:
a = Δv / Δt
a = (14 m/s − 30 m/s) / (6 s − 0 s)
a = -2.67 m/s²
Answer: 846°C
Explanation:
The quantity of Heat Energy (Q) required to heat bismuth depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that:
Q = 423 joules
Mass of bismuth = 4.06g
C = 0.123 J/(g°C)
Φ = ?
Then, Q = MCΦ
423 J = 4.06g x 0.123 J/(g°C) x Φ
423 J = 0.5J/°C x Φ
Φ = (423J/ 0.5g°C)
Φ = 846°C
Thus, the change in temperature of the sample is 846°C