Question #1:
a). The sketch is attached to this answer.
b). The equivalent resistance of 30Ω and 50Ω in parallel is
1 / (1/30 + 1/50) =
18.75 Ωc). I = V/R = (100/30) =
(3 and 1/3) Amperesd). Follow the wires, and you see that the 50Ω resistor is
connected directly to the battery, and so is the voltmeter.
So the voltage across the 50Ω resistor, and the reading
on the voltmeter, is
100 volts.e). I = V/R
Through the 30Ω resistor: I = 3-1/3 A
Through the 50Ω resistor: I = 2 A
f). In the parallel circuit, both resistors are connected
directly to the battery. So neither resistor even knows
that the other one is there.
Each resistor sees 100 volts,
and the current through each resistor is 100/R, just as if
it were the only resistor in the circuit.
It will be 4 times of original thus maximum speed would be 80cm/s
Gravitational potential energy can be calculated using the formula:

Where:
PEgrav = Gravitational potential energy
m= mass
g = acceleration due to gravity
h = height
On Earth acceleration due to gravity is a constant 9.8 but since the scenario is on Mars, the pull of gravity is different. In this case, it is 3.7, so we will use that for g.
So put in what you know and solve for what you don't know.
m = 10kg
g = 3.7m/s^2
h = 1m
So we put that in and solve it.

