The purpose of this lab is to determine whether the surface of an area would affect the coefficient of Friction. My classmates and I have learned a lot in this lab and that there could have been some errors in our lab because the strength of how a person pulls it might be a slight different than the normal force. I learned from this lab that the <span>surface area would have no effect on the coefficient of friction. </span>
New moon, because the New Moon (A) because the sun and the moon work together most when it is there on the tides
We know, W = F * s
W = mg * s
Here, w = 2 J
m = 180 g = 0.180 Kg
g = 9.8 m/s
Substitute their values into the expression:
2 = 0.180*9.8 * s
1.764s = 2
s = 2 / 1.764
s = 1.13 meter
In short, Your Final Answer is 1.13 m
Hope this helps!
A pressure system is a relative peak or lull in the sea level pressure distribution. The surface pressure at sea level varies minimally, with the lowest value measured 87 kilopascals (26 inHg) and the highest recorded 108.57 kilopascals (32.06 inHg). High- and low-pressure systems evolve due to interactions of temperature differentials in the atmosphere, temperature differences between the atmosphere and water within oceans and lakes, the influence of upper-level disturbances jargon as well as the amount of solar heating or radiational cooling an area receives. Pressure systems cause weather experienced locally. Low-pressure systems are associated with clouds and precipitation that minimize temperature changes through the day, whereas high-pressure systems normally associated with dry weather and mostly clear skies with larger diurnal temperature changes due to greater radiation at night and greater sunshine during the day. Pressure systems are analyzed by those in the field of meteorology within surface weather maps.