Answer:
Law of conservation of momentum states that "The total momentum of an isolated system always remains constant"
Or
"In an isolated system the total momentum of the interacting bodies remains constant before and after collision or interaction".
4 times as much distance to stop
Answer:
1) a = -1 m/s²
2) v = 12 m/s
Explanation:
Given,
The initial velocity of the object, u = 15 m/s
The final velocity of the object, v = 10 m/s
The time taken by the object to travel is, t = 5 s
Using the first equation of motion
<em>v = u + at</em>
a = (v - u) / t
Substituting the values
a = (10 - 15) / 5
= -1 m/s²
The negative sign indicates the body is decelerating
The acceleration of the object is, a = -1 m/s²
The speed of the object after 2 seconds
From the above equations of motion
v = 15 + (-1) 2
= 12 m/s
Hence, the speed of the object after 2 seconds is, v = 12 m/s
Answer:
Mp =Pp g where p = density of solid Platinum
Wp = Mp Pp g weight of mass M
Volume displaced is 1 cm^3
Weight of water = .0098 N since 1 cm^3 displaced
Or Ww = 1 cm^3 * .001 kg / cm^3 * 9.8 N/kg = .0098 N
Answer:
62.5 %
Explanation:
Let the initial intensity of unpolarized light is Io.
After first polariser the intensity of light becomes I'.
So, 
Now it passes through another polariser. The angle between the first polariser and the second polariser is given by Ф. The intensity is I''.
According to the law of Malus

Here, Ф = 30 degree

The percentage change in the intensity is given by

= 62.5 %