Hello!
The H₃O⁺ concentration can be found using the definition of pH and clearing the equation for [H₃O⁺]. The solution has a pH lower than 7, so the Sauvignon Blanc is
acid. The calculation for [H₃O⁺] is shown below:
![pH=-log [H_3O^{+}]](https://tex.z-dn.net/?f=pH%3D-log%20%5BH_3O%5E%7B%2B%7D%5D%20)
![[H_3O^{+}]= 10^{-pH}=10^{-3,24}=0,00058M](https://tex.z-dn.net/?f=%5BH_3O%5E%7B%2B%7D%5D%3D%2010%5E%7B-pH%7D%3D10%5E%7B-3%2C24%7D%3D0%2C00058M%20)
So, the concentration of H₃O⁺ in a Sauvignon Blanc with a pH of 3,24 is
0,00058 MHave a nice day!
Answer choice A, B, and C is right about the valence electrons. For answer choice D and E, Would in it be a more of an element kind of choice. whether the element is closer to the left side of the periodic table or not determines the high and low energy.
A pure chemical compound is a chemical substance that is composed of a particular set of molecules or ions that are chemically bonded.
Answer:
Here's what I get
Explanation:
I followed the instructions and got the diagram below.
mass of PbI₂ = 27.6606 g
<h3>Further explanation</h3>
Given
Pb(NO₃)₂ + NaI → PbI₂ + NaNO₃
28.0 grams of Pb(NO₃)₂ react with 18.0 grams of NaI
Required
mass of PbI₂
Solution
Balanced equation
Pb(NO₃)₂ + 2NaI → PbI₂ + 2NaNO₃
The principle of a balanced reaction is the number of atoms in the reactants = the number of atoms in the product
mol Pb(NO₃)₂ :
= 28 : 331,2 g/mol
= 0.0845
mol NaI :
= 18 : 149,89 g/mol
= 0.12
Limiting reactant : mol : coefficient
Pb(NO₃)₂ : 0.0845 : 1 = 0.0845
NaI : 0.12 : 2 = 0.06
NaI limiting reactant (smaller ratio)
mol PbI₂ based on NaI
= 1/2 x 0.12 = 0.06
Mass PbI₂ :
= 0.06 x 461,01 g/mol
= 27.6606 g