Answer:
0.14 M
Explanation:
To determinate the concentration of a new solution, we can use the equation below:
C1xV1 = C2xV2
Where C is the concentration, and V the volume, 1 represents the initial solution, and 2 the final one. So, first, the initial concentration is 1.50 M, the initial volume is 55.0 mL and the final volume is 278 mL
1.50x55.0 = C2x278
C2 = 0.30 M
The portion of 139 mL will be the same concentration because it wasn't diluted or evaporated. The final volume will be the volume of the initial solution plus the volume of water added, V2 = 139 + 155 = 294 mL
Then,
0.30x139 = C2x294
C2 = 0.14 M
Answer:
Water but with salt
Explanation:
You can’t see it but it’s there
Schrodinger developed a famous equation that allows the solutions for electron wave functions to be found given a specific potential. For the case of an atom, Schroginger's equation allows the determination of electron wave functions. These wave functions tell us how electrons are distributed in space around the atom.
Data:
weight of water before heating = 0.349
weight of hydrate before heateing = 2.107
Formula:
Weight percent of water = [ (weight of water) / (weight of the hydrate) ] * 100
Solution:
Weight percent of water = [ 0.349 / 2.107] * 100 ≈ 16.6 %
Answer: 16.6%