<span>An atom is composed of at least three types of subatomic particles. An electron has properties of both waves and particles. An atom is mostly empty space with a dense, positively charged nucleus.</span>
pH=6.98
Explanation:
This is a very interesting question because it tests your understanding of what it means to have a dynamic equilibrium going on in solution.
As you know, pure water undergoes self-ionization to form hydronium ions, H3O+, and hydroxide anions, OH−.
2H2O(l]⇌H3O+(aq]+OH−(aq]→ very important!
At room temperature, the value of water's ionization constant, KW, is equal to 10−14. This means that you have
KW=[H3O+]⋅[OH−]=10−14
Since the concentrations of hydronium and hydroxide ions are equal for pure water, you will have
[H3O+]=√10−14=10−7M
The pH of pure water will thus be
pH=−log([H3O+])
pH=−log(10−7)=7
Now, let's assume that you're working with a 1.0-L solution of pure water and you add some 10
Yesssirrrrrrrrr someone answer
Answer:
3.59x10⁻⁴ mol
Explanation:
Assuming ideal behaviour we can solve this problem by using the<em> PV=nRT formula</em>, where:
- R = 8314.46 Pa·L·mol⁻¹·K⁻¹
We<u> input the data given by the problem</u>:
- 205 Pa * 5.68 L = n * 8314.46 Pa·L·mol⁻¹·K⁻¹ * 390.4 K
And <u>solve for n</u>: