Answer:
ASA
Step-by-step explanation:
You can show the angles at either end of segment BC in triangles MBC and LCB are congruent, so you have two angles and the segment between. The appropriate theorem in such a case is ASA.
Answer:
549 ft
Step-by-step explanation:
take 670ft away from 1,220 ft ( not all the way sure of I'm right)
T(t)=e−kt(∫ekt[KM(t)+H(t)+U(t)]dt+C)
M is the outside temperature, H is other things that affect temperature
in the tank(0 in this case), and U is the solar panel. K comes from the
time constant, and should be the inverse of the time constant I believe.
T is temperature, t is time.
T(t)=e−164t(∫e164t[164(80)+4t]dt
After integrating I keep getting
−16304+256t+Ce−164t
I calculate C to be 16414 setting t equal to 0 and using the initial conditions
When you arrange the N points in sequence around the polygon (clockwise or counterclockwise), the area is half the magnitude of the sum of the determinants of the points taken pairwise. The N determinants will also include the one involving the last point and the first one.
For example, consider the vertices of a triangle: (1,1), (2,3), (3,-1). Its area can be computed as
(1/2)*|(1*3-1*2) +(2*-1-3*3) +(3*1-(-1)*1)|
= (1/2)*|1 -11 +4| = 3