Answer:
5446.8 J
Explanation:
From the question given above, the following data were obtained:
Mass (M) = 50 g
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Specific heat capacity (C) = 0.89 J/gºC
Heat (Q) required =?
Next, we shall determine the change in the temperature. This can be obtained as follow:
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 192.4 – 70
ΔT = 122.4 °C
Finally, we shall determine the heat required to heat up the block of aluminum as follow:
Mass (M) = 50 g
Specific heat capacity (C) = 0.89 J/gºC
Change in temperature (ΔT) = 122.4 °C
Heat (Q) required =?
Q = MCΔT
Q = 50 × 0.89 × 122.4
Q = 5446.8 J
Thus, the heat required to heat up the block of aluminum is 5446.8 J
Answer:
Not influenced or controlled by others in matters of opinion
Answer:
Determining the Slope on a p-t Graph. It was learned earlier in Lesson 3 that the slope of the line on a position versus time graph is equal to the velocity of the object. ... If the object has a velocity of 0 m/s, then the slope of the line will be 0 m/s. The slope of the line on a position versus time graph tells it all.
Explanation:
#<em>c</em><em>a</em><em>r</em><em>r</em><em>y</em><em>o</em><em>n</em><em>l</em><em>e</em><em>a</em><em>r</em><em>n</em><em>i</em><em>n</em><em>g</em><em> </em>
Answer:


Explanation:
<u>First mixture</u>:
40 wt% methanol - 60 wt% water 200 kg


<u>Second mixture</u>:
70 wt% methanol - 30 wt% water 150 kg


Final mixture:




If, the compositions are constant, the only variables are the mass of each mixture used in the final one, so there can be only one independent balance.