Answer:
The answer is (C) There are more solute molecules than water molecules.
Explanation:
A saturated solution is one in which no more solute can be dissolved or disintegrated into the solvent. When or if the ozone stops being dissolved in the water, it implies that the water has already taken on more ozone molecules than it can contain, meaning there are more solute molecules (ozone molecules) than there are solvent molecules (water molecules).
Answer:
B. CaCl + LiCO3 yields CaCO3 + LiCl is not correct
It should be CaCl2 + Li2CO3 → 2LiCl + CaCO3
Explanation:
For a reaction to be double displacement reaction there are two things we need to look for
1) There must be an interchange of the group of ions
2) The reactants must dissolve in water to release ions
A. 2RbNO3 + BeF2 yields Be(NO3)2 + 2RbF
2Rb+ + NO3- + Be^2+ + 2F- → Be(NO₃)₂ + 2RbF
This is correct
B. CaCl + LiCO3 yields CaCO3 + LiCl
This is not correct
The correct equation is:
CaCl2 + Li2CO3 → Ca2+ + 2Cl- + 2Li+ + CO3^2- → 2LiCl + CaCO3
C. Na3PO4 + 3KOH yields 3NaOH + K3PO4
3Na+ + PO4^3- + 3K+ + 3OH- → 3NaOH + K3PO4
This is correct
D. 2MgI2 + Mn(SO3)2 yields 2MgSO3 + MnI4
2Mg^2+ + 4I- + Mn^4+ + 2SO3^2- → 2 MgSO3 + MnI4
This is correct
Answer:
50
Explanation:
We will need a balanced equation with masses, moles, and molar masses of the compounds involved.
1. Gather all the information in one place with molar masses above the formulas and masses below them.
Mᵣ: 30.01 32.00 46.01
2NO + O₂ ⟶ 2NO₂
Mass/g: 80.00 16.00
2. Calculate the moles of each reactant

3. Calculate the moles of NO₂ we can obtain from each reactant
From NO:
The molar ratio is 2 mol NO₂:2 mol NO

From O₂:
The molar ratio is 2 mol NO₂:1 mol O₂

4. Identify the limiting and excess reactants
The limiting reactant is O₂ because it gives the smaller amount of NO₂.
The excess reactant is NO.
5. Mass of excess reactant
(a) Moles of NO reacted
The molar ratio is 2 mol NO:1 mol O₂

(b) Mass of NO reacted

(c) Mass of NO remaining
Mass remaining = original mass – mass reacted = (80.00 - 30.01) g = 50 g NO
The correct answer for the question that is being presented above is this one: "<span>16.728 g."</span>
Given that
ΔHsolid = -5.66 kJ/mol.
This means that 5.66 kJ of heat is released when 1 mole of NH3 solidifies
When 5.57 kJ of heat is released
amount of NH3 solidifies = 5.57/5.66 = 0.984 moles
<span>molar mass of NH3 = 17 g/mole </span>
<span>1 mole of NH3 = 17 g </span>
So, 0.984 moles of NH3 = 17 X 0.984 = 16.728 g
Answer:

Explanation:
The molecular formula of the monohydrate formed = 
The molecular mass of the monohydrate formed = 
So, Mass = 24 + 14 + 6 × 1 + 5 × 16 = 155 g
Mass of phosphorus = 31 g
Thus,
