Answer:
The mean number of adults who would have bank savings accounts is 32.
Step-by-step explanation:
For each adult surveyed, there are only two possible outcomes. Either they have bank savings accounts, or they do not. So we use the binomial probability distribution to solve this problem.
Binomial probability distribution
Probability of exactly x sucesses on n repeated trials, with p probability.
The expected value of the binomial distribution is:

In this problem, we have that:

If we were to survey 50 randomly selected adults, find the mean number of adults who would have bank savings accounts.
This is E(X) when
.
So

The mean number of adults who would have bank savings accounts is 32.
Answer: (A) 352 π units^2
Explanation in image.
Knowledge point:
Geometry - cylinder area formula
Answer:
<em>LCM</em> = 
Step-by-step explanation:
Making factors of 
Taking
common:

Using <em>factorization</em> method:

Now, Making factors of 
Taking
common:

Using <em>factorization</em> method:

The underlined parts show the Highest Common Factor(HCF).
i.e. <em>HCF</em> is
.
We know the relation between <em>LCM, HCF</em> of the two numbers <em>'p' , 'q'</em> and the <em>numbers</em> themselves as:

Using equations <em>(1)</em> and <em>(2)</em>:

Hence, <em>LCM</em> = 
(4,12) is the correct answer
Answer: only (x-y=4) and (x+y=4).
Step-by-step explanation:
Notice target point has y=0, so all terms with y are zero. Then all 6 equations reduce to m x = k, for various m and k. So calculate 4×m and compare to k six times.
x - y = 4 4=4 yes
-x - y = 4 -4=4 no
2x - y = 7 8=7 no
x + y = 4 4=4 yes
2x + y = 7 8=7 no
2x + y = -7 8=-7 no.