To develop this problem we will apply the concepts related to the Doppler effect. The frequency of sound perceive by observer changes from source emitting the sound. The frequency received by observer
is more than the frequency emitted by the source. The expression to find the frequency received by the person is,

= Frequency of the source
= Speed of sound
= Speed of source
The velocity of the ambulance is


Replacing at the expression to frequency of observer we have,


Therefore the frequency receive by observer is 878Hz
From the momentum conservation we know that the initial momentum is equal to the final momentum. The momentum in a singular way can be defined as the product between the mass and the velocity of an object. In the presented system, however, there are two objects, therefore the mass of both and the speed of both, before and after the collision must be taken into account. Mathematically we could describe this as

Here,
= Mass of each object
= Initial velocity of each object
= Final velocity of each object
From here we can realize that it is necessary to use the system on both cars to be able to predict what will happen either with their masses, or their speeds.
The correct answer is C.
Answer:
Strong nuclear force
Explanation:
The particles in the atom's nucleus bond together because there is a strong nuclear force between the protons and neutrons that attracts them to each other and binds together the nucleus.
The just-world phenomenon is the belief that everything that happens to an individual is due to the individual's actions; in other words, all good and all bad that an individual encounters in the world is deserved by that person. This leads to a victim being blamed with the logic that "they had it coming" and someone who encounters good fortune being praised with "they earned it". Therefore, in this scenario, people will assume that Rose's inheritance is well deserved.<span />