Weight = (mass) x (gravity)
Weight = (7.0 kg) x (gravity)
On Earth, where (gravity) is roughly 10 N/kg . . .
Weight = (7.0 kg) x (roughly 10 N/kg)
Weight = roughly 70 Newtons
That's <em>B </em>on Earth.
It would be some other number on other bodies.
Answer:
129900
Explanation:
Given that
Mass of the particle, m = 1 g = 1*10^-3 kg
Speed of the particle, u = ½c
Speed of light, c = 3*10^8
To solve this, we will use the formula
p = ymu, where
y = √[1 - (u²/c²)]
Let's solve for y, first. We have
y = √[1 - (1.5*10^8²/3*10^8²)]
y = √(1 - ½²)
y = √(1 - ¼)
y = √0.75
y = 0.8660, using our newly gotten y, we use it to solve the final equation
p = ymu
p = 0.866 * 1*10^-3 * 1.5*10^8
p = 129900 kgm/s
thus, we have found that the momentum of the particle is 129900 kgm/s
Answer:
0.0605 Kg m^2
Explanation:
In this case where we have find he moment of inertia of this object about an axis perpendicular to the x-y plane and passing through the origin, we can just add three moment of inertia's .
MOI= 0.25×0.3^2 + 0.35×0.4^2- 0.45×0.2^2
= 0.0605 Kg m^2
Answer:
40.68 trillion kilometers.
Explanation:
Multiply 4.3 × 9.46, the product which you get is your answer in trillion km