Answer:
The final velocity of the runner at the end of the given time is 2.7 m/s.
Explanation:
Given;
initial velocity of the runner, u = 1.1 m/s
constant acceleration, a = 0.8 m/s²
time of motion, t = 2.0 s
The velocity of the runner at the end of the given time is calculate as;

where;
v is the final velocity of the runner at the end of the given time;
v = 1.1 + (0.8)(2)
v = 2.7 m/s
Therefore, the final velocity of the runner at the end of the given time is 2.7 m/s.
When you talk about Hooke's law, it always have to do something with springs. Hooke's Law, from Robert Hooke, saw a relation between the force applied to the spring and the extension of its length. The equation is: F = kx, where k is the spring constant and x is the displacement of the original and stretched lengths. In other words, x is the length of deformation. Hence, the object must be elastic to come up with a displacement or deformation, in the first place. Then, the Hooke's Law is only applicable to elastic materials.
Answer: Primary coil
A Step-down transformer is an electrical device which is used to decrease the voltage using magnetic induction. The windings of the primary coil are more than the windings of the secondary coils. h1, h2 notations are used to refer to primary coils. On the other hand, x1, x2 notations are used to refer to the secondary coils of the transformer. In case of step-up transformer, the windings of primary coil are less than the secondary in order to increase the voltage.