Copper substance cannot be decomposed by a chemical change.
<h3 />
- When heated, the copper to carbonate breaks down into copper to oxide. The copper carbonate, which is dark in colour, releases carbon dioxide as well.Because they are the simplest chemically, elements cannot be broken down by chemical processes.
- Elements are those pure compounds that cannot be broken down by reactions, heating, electrolysis, or other common chemical processes. Examples of elements are oxygen, gold, and silver. Its makeup stays the same, though. One instance of a physical change is melting. A physical change is when a sample of matter experiences a change in some of its qualities but not in its identity. Water turns into water vapour when it is heated.
Learn more about copper here:
brainly.com/question/493292
#SPJ4
Explanation
NaCl: Ionic crystal lattice forces
Hg: Metallic bonding
CO₂: London dispersion forces
CH₄: London dispersion forces
Li₂O: Ionic crystal lattice forces
Ag: Metallic bonds
Ionic crystal lattice forces are strong electrostatic force of attraction between oppositely charged ions arranged into a crystal lattice of ionic compound. NaCl and Li₂O are ionic compounds
London dispersion forces holds the molecules of carbon dioxide and methane. They are weak attractions found between non-polar (and polar) molecules.
Metallic bonds exists between Mercury and Gold atoms. This is due to sea of electrons present.
Answer:
Answers with detail are given below
Explanation:
1) Given data:
Mass of Rb₃Rn = 76.19 g
Number of moles = ?
Solution:
Number of moles = mass/molar mass
Molar mass = 478.43 g/mol
Number of moles = 76.19 g/ 478.43 g/mol
Number of moles = 0.16 mol
2) Given data:
Mass of FrBi₂ = 120.02 g
Number of moles = ?
Solution:
Number of moles = mass/molar mass
Molar mass = 640.96 g/mol
Number of moles = 120.02 g/640.96 g/mol
Number of moles = 0.19 mol
3) Given data:
Mass of Zn₂F₃ = 88.24 g
Number of moles = ?
Solution:
Number of moles = mass/molar mass
Molar mass = 187.73 g/mol
Number of moles = 88.24 g/ 187.73 g/mol
Number of moles = 0.47 mol
4) Given data:
Number of moles of Sb₄Cl = 1.20 mol
Mass of Sb₄Cl = ?
Solution:
Number of moles = mass/molar mass
Molar mass = 522.49 g/mol
Mass = Number of moles × molar mass
Mass = 1.20 mol × 522.49 g/mol
Mass = 626.99 g
<span>In the electron cloud model, the denser areas represent that there is a great probability that a good number of electrons are ganged up or crowded in that area. The electrons affect the density of some parts of the electron cloud when they condense in those locations.</span>