Answer:
The molar mass is determined by applying the Ideal Gas Law, PV = nRT, where P is the pressure (in atm), V is the volume (in L), n is the number of moles of gas, R is the universal gas constant (0.08206 L∙atm/mol∙K), and T is the temperature (in K).
Hope this helps! :)
Sulfur forms compounds in oxidation states −2 (sulfide, S2−), +4 (sulfite, SO32−), and +6 (sulfate, SO42−). I don't know what type of ion but hope this helps!! :)
Answer:
2x + 3y = 18 sum of charges of the iron ions must be +18 to balance 18 CN- ... y = 4 so there are 4 Fe3+ ions and (7–4) = 3
Answer:
0.2788 M
1.674 %(m/V)
Explanation:
Step 1: Write the balanced equation
NaOH + CH₃COOH → CH₃COONa + H₂O
Step 2: Calculate the reacting moles of NaOH

Step 3: Calculate the reacting moles of CH₃COOH
The molar ratio of NaOH to CH₃COOH is 1:1.

Step 4: Calculate the molarity of the acetic acid solution

Step 5: Calculate the mass of acetic acid
The molar mass of acetic acid is 60.05 g/mol.

Step 6: Calculate the percentage of acetic acid in the solution

C. Metal
You can think of aluminum cans foils
They are both malleable (to morph easily)
They both are ductile (to flatten out)
They both have luster (shiny)
And they both conduct electricity.