Your answer is B. It gets energy from the Sun.
Have a great day :)
Answer:
IMISS THE RAGE⁉️⁉️⁉️⁉️⁉️⁉️IMISS THE RAGE⁉️⁉️⁉️⁉️⁉️⁉️IMISS THE RAGE⁉️⁉️⁉️⁉️⁉️⁉️
Answer:
B. Excited state
Explanation:
Energy levels higher than the ground state are called the excited states. This concept is based on the premise that electrons can move round the nucleus in certain permissibe orbits or energy levels.
The ground state is the lowest energy state available to the electron. This is usually the most stable state.
The excited state is any level higher than the ground state. An electron in an energy level has a definite amount of energy associated with it at that level.
<u>Answer:</u> The percent composition of hydrogen in the sample is 15.22 %
<u>Explanation:</u>
We are given:
Mass of hydrogen = 7 grams
Mass of nitrogen = 32 grams
Mass of carbon = 7 grams
Total mass of the sample = 7 + 32 + 7 = 46 grams
To calculate the percentage composition of hydrogen in sample, we use the equation:

Mass of sample = 46 g
Mass of hydrogen = 7 g
Putting values in above equation, we get:

Hence, the percent composition of hydrogen in the sample is 15.22 %
Answer:
At Equilibrium
[COCl₂] = 0.226 M
[CO] = 0.054 M
[Cl₂] = 0.054 M
Explanation:
Given that;
equilibrium constant Kc = 1.29 × 10⁻² at 600k
the equilibrium concentrations of reactant and products = ?
when 0.280 moles of COCl2(g) are introduced into a 1.00 L vessel at 600 K. [COCl²]
Concentration of COCl₂ = 0.280 / 1.00 = 0.280 M
COCl₂(g) ----------> CO(g) + Cl₂(g)
0.280 0 0 ------------ Initial
-x x x
(0.280 - x) x x ----------- equilibrium
we know that; solid does not take part in equilibrium constant expression
so
KC = [CO][Cl₂] / COCl₂
we substitute
1.29 × 10⁻² = x² / (0.280 - x)
0.0129 (0.280 - x) = x²
x² = 0.003612 - 0.0129x
x² + 0.0129x - 0.003612 = 0
x = -b±√(b² - 4ac) / 2a
we substitute
x = [-(0.0129)±√((0.0129)² - 4×1×(-0.003612))] / [2 × 1 ]
x = [-0.0129 ± √( 0.00017 + 0.01445)] / 2
x = [-0.0129 ± 0.1209] / 2
Acceptable value of x =[ -0.0129 + 0.1209] / 2
x = 0.108 / 2
x = 0.054
At equilibrium
[COCl₂] = (0.280 - x) = 0.280 - 0.054 = 0.226 M
[CO] = 0.054 M
[Cl₂] = 0.054 M