Answer:
Explanation:
Assume that you have mixed 135 mL of 0.0147 mol·L⁻¹ NiCl₂ with 190 mL of 0.250 mol·L⁻¹ NH₃.
1. Moles of Ni²⁺

2. Moles of NH₃

3. Initial concentrations after mixing
(a) Total volume
V = 135 mL + 190 mL = 325 mL
(b) [Ni²⁺]

(c) [NH₃]

3. Equilibrium concentration of Ni²⁺
The reaction will reach the same equilibrium whether it approaches from the right or left.
Assume the reaction goes to completion.
Ni²⁺ + 6NH₃ ⇌ Ni(NH₃)₆²⁺
I/mol·L⁻¹: 6.106×10⁻³ 0.1462 0
C/mol·L⁻¹: -6.106×10⁻³ 0.1462-6×6.106×10⁻³ 0
E/mol·L⁻¹: 0 0.1095 6.106×10⁻³
Then we approach equilibrium from the right.
Ni²⁺ + 6NH₃ ⇌ Ni(NH₃)₆²⁺
I/mol·L⁻¹: 0 0.1095 6.106×10⁻³
C/mol·L⁻¹: +x +6x -x
E/mol·L⁻¹: x 0.1095+6x 6.106×10⁻³-x
![K_{\text{f}} = \dfrac{\text{[Ni(NH$_{3}$)$_{6}^{2+}$]}}{\text{[Ni$^{2+}$]}\text{[NH$_{3}$]}^{6}} = 2.0 \times 10^{8}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bf%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BNi%28NH%24_%7B3%7D%24%29%24_%7B6%7D%5E%7B2%2B%7D%24%5D%7D%7D%7B%5Ctext%7B%5BNi%24%5E%7B2%2B%7D%24%5D%7D%5Ctext%7B%5BNH%24_%7B3%7D%24%5D%7D%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D)
Kf is large, so x ≪ 6.106×10⁻³. Then
![K_{\text{f}} = \dfrac{\text{[Ni(NH$_{3}$)$_{6}^{2+}$]}}{\text{[Ni$^{2+}$]}\text{[NH$_{3}$]}^{6}} = 2.0 \times 10^{8}\\\\\dfrac{6.106 \times 10^{-3}}{x\times 0.1095^{6}} = 2.0 \times 10^{8}\\\\6.106 \times 10^{-3} = 2.0 \times 10^{8}\times 0.1095^{6}x= 345.1x\\x= \dfrac{6.106 \times 10^{-3}}{345.1} = 1.77 \times 10^{-5}\\\\\text{The concentration of Ni$^{2+}$ at equilibrium is $\large \boxed{\mathbf{1.77 \times 10^{-5}}\textbf{ mol/L}}$}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bf%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BNi%28NH%24_%7B3%7D%24%29%24_%7B6%7D%5E%7B2%2B%7D%24%5D%7D%7D%7B%5Ctext%7B%5BNi%24%5E%7B2%2B%7D%24%5D%7D%5Ctext%7B%5BNH%24_%7B3%7D%24%5D%7D%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5C%5C%5C%5C%5Cdfrac%7B6.106%20%5Ctimes%2010%5E%7B-3%7D%7D%7Bx%5Ctimes%200.1095%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5C%5C%5C%5C6.106%20%5Ctimes%2010%5E%7B-3%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5Ctimes%200.1095%5E%7B6%7Dx%3D%20345.1x%5C%5Cx%3D%20%5Cdfrac%7B6.106%20%5Ctimes%2010%5E%7B-3%7D%7D%7B345.1%7D%20%3D%201.77%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5C%5Ctext%7BThe%20concentration%20of%20Ni%24%5E%7B2%2B%7D%24%20at%20equilibrium%20is%20%24%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.77%20%5Ctimes%2010%5E%7B-5%7D%7D%5Ctextbf%7B%20mol%2FL%7D%7D%24%7D)
Answer:
Electrons are particles that surround the nucleus of an atom like a cloud. As with protons and neutrons, electrons are essential to an atom's structure.
Answer:
Josue
Explanation:
J.J Thompson proposed the plum pudding model of the atom. In his proposition, the atom is a sphere of positive charges into which negative charges were embedded. This model of the atom did not significantly contribute to our present day understanding of atomic structure.
On the other hand Ernest Rutherford laid out the foundation for a more accurate understanding of atomic structure in his nuclear model of the atom. According to Rutherford, the atom consists of a positively charged massive core called the nucleus around which electron move in orbits. His idea was akin to the solar system with the sun at it's core and planets moving around the sun in orbits.
This his idea of the nuclear theory was held as fundamentally correct by Neils Bohr's model of the atom. Hence, his nuclear theory of the atom was a significant milestone in our present day understanding of atomic structure.
Answer:
kinetic energy.
Explanation:
an object in motion collides with another object to make that object in motion.
kinetic energy is the energy of an object being in motion.