A. False. If it is high tide in one place on Earth, the place exactly opposite to it will also have a <em>high</em> tide.
The gravitational attraction of the Moon and the inertia of the oceans cause <em>two tidal bulges </em>on opposite sides of the Earth.
B. True. Cassini used flybys of Venus, Earth and Jupiter as slingshots to reach Saturn.
C. True. The whole solar system moves around the galaxy.
D. True. If a planet’s gravity is not strong enough, the molecules in its atmosphere will have enough kinetic energy to escape into space.
E. False. The <em>mass of an object is constant</em>, but its <em>weight changes</em> according to the gravity of the planet.
F. False. To find the mass of an object, <em>divide</em> its weight by gravity.
or weight = mass × gravity
∴ <em>Mass = weight/gravity
</em>
Answer:
The predominant intermolecular force in the liquid state of each of these compounds:
ammonia (NH3)
methane (CH4)
and nitrogen trifluoride (NF3)
Explanation:
The types of intermolecular forces:
1.Hydrogen bonding: It is a weak electrostatic force of attraction that exists between the hydrogen atom and a highly electronegative atom like N,O,F.
2.Dipole-dipole interactions: They exist between the oppositely charged dipoles in a polar covalent molecule.
3. London dispersion forces exist between all the atoms and molecules.
NH3 ammonia consists of intermolecular H-bonding.
Methane has London dispersion forces.
Because both carbon and hydrogen has almost similar electronegativity values.
NF3 has dipole-dipole interactions due to the electronegativity variations between nitrogen and fluorine.
Answer:
9.36
Explanation:
Sodium formate is the conjugate base of formic acid.
Also,

for sodium formate is 
Given that:
of formic acid = 
And, 
So,


Concentration = 0.35 M
HCOONa ⇒ Na⁺ + HCOO⁻
Consider the ICE take for the formate ion as:
HCOO⁻ + H₂O ⇄ HCOOH + OH⁻
At t=0 0.35 - -
At t =equilibrium (0.35-x) x x
The expression for dissociation constant of sodium formate is:
![K_{b}=\frac {[OH^-][HCOOH]}{[HCOO^-]}](https://tex.z-dn.net/?f=K_%7Bb%7D%3D%5Cfrac%20%7B%5BOH%5E-%5D%5BHCOOH%5D%7D%7B%5BHCOO%5E-%5D%7D)

Solving for x, we get:
x = 0.44×10⁻⁵ M
pOH = -log[OH⁻] = -log(0.44×10⁻⁵) = 4.64
pH + pOH = 14
So,
<u>pH = 14 - 4.64 = 9.36</u>
Answer:
B
Explanation:
I am not sure but I think it is B. Out of all the answers that one makes sense.