The volume of the prism is a function of the cubes in it.
The volume of the prism is: <em>(b) 2 unit cubes and 9 smaller cubes of volume fraction 1 over 27 cubic inch each</em>
From the question, we have:
<em />
<em> --- number of cubes</em>
<em />
<em> --- the edge length of each cube</em>
<em />
So, the volume of a cube is:
![v = l^3](https://tex.z-dn.net/?f=v%20%3D%20l%5E3)
This gives
![v = \frac 13^3](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%2013%5E3)
![v = \frac 1{27}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%201%7B27%7D)
The volume of the prism is then calculated as:
![V = n \times v](https://tex.z-dn.net/?f=V%20%3D%20n%20%5Ctimes%20v)
This gives
![V = 63 \times \frac 1{27}](https://tex.z-dn.net/?f=V%20%3D%2063%20%5Ctimes%20%5Cfrac%201%7B27%7D)
![V = \frac {63}{27}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%20%7B63%7D%7B27%7D)
Rewrite as:
![V = \frac {54 + 9}{27}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%20%7B54%20%2B%209%7D%7B27%7D)
Split
![V = \frac {54}{27} + \frac{9}{27}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%20%7B54%7D%7B27%7D%20%2B%20%5Cfrac%7B9%7D%7B27%7D)
![V = 2 + \frac{9}{27}](https://tex.z-dn.net/?f=V%20%3D%202%20%2B%20%5Cfrac%7B9%7D%7B27%7D)
Rewrite as:
![V = 2 + 9 \times \frac{1}{27}](https://tex.z-dn.net/?f=V%20%3D%202%20%2B%209%20%5Ctimes%20%5Cfrac%7B1%7D%7B27%7D)
The above equation means that, the volume of the prism is:
<em>(b) 2 unit cubes and 9 smaller cubes of volume fraction 1 over 27 cubic inch each
</em>
<em />
Read more about volumes at:
brainly.com/question/13338592