Question is incomplete, the complete question is as follows:
A student wants to examine a substance by altering the bonds within its molecules. Which of the following properties of the substance should the student examine?
A. Toxicity, because it can be observed by altering the state of the substance
B. Boiling point, because it can be observed by altering the state of the substance
C. Toxicity, because it can be observed by replacing the atoms of the substance with new atoms
D. Boiling point, because it can be observed by replacing the atoms of the substance with new atoms
Answer:
B.
Explanation:
A student can examine a substance without altering the bonds within the molecules by examining its boiling point.
The boiling point is the property of a substance, at which the substance changes its state, which is from solid to liquid, liquid to gas and others. So, examining the boiling point will alter the bonds within the molecules as the state of substance will change.
Hence, the correct answer is "B".
Answer:
Water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Explanation:
Hello.
In this case, since no options are given we can infer from the statement that due to water's higher boiling point than acetone we can conclude that when they are in liquid state, water has stronger intermolecular forces which allow its particles to be held in a stronger way in comparison to the acetone's molecules, for that reason, more energy will be required in order to separate them and promote the boiling process, which is attained via increasing the temperature. Besides, less energy will be required for the separation of the acetone's molecules in order to boil it when liquid, therefore, a lower temperature is required.
In such a way, we can sum up that water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Regards.
As a base is added to an acidic solution, the H+ ions in solution that make it acidic are slowly neutralized into water (via OH-, the base). As these ions are converted into water the concentration of them decreases, so the pH decreases, as they are directly related.
Hope this helps!
<u>Answer:</u>
<u>For a:</u> The chemical equation for the dissolution of sodium carbonate is 
<u>For b:</u> The net acid-base reaction is 
<u>Explanation:</u>
Dissolution reaction is defined as the reaction in which a solid compound gets dissolved in water to form aqueous solution.
The chemical equation for the dissolution of sodium carbonate follows:

Ionization reaction is defined as the reaction in which an ionic compound dissociates into its ions when dissolved in aqueous solution.
The chemical equation for the ionization of sodium carbonate follows:

Now, the anion formed which is
reacts with water to form conjugate acid.
The chemical equation for the reaction of anion with water follows:

Hence, the net acid-base reaction of the anion formed and water is written above.
Answer:
57.48%
Explanation:
Calculate the mass of 1 mole of malachite:
MM Cu = 63.55
MM O = 16.00
MM H = 1.01
MM C = 12.01

A mole of malachite has:
2 moles of Cu
5 moles of O
2 moles of H
1 mole of C
MW Malachite = 2*MM(CU) + 5*MM(O) + 2*MM(H) + 1 *MM(C)
MW Malachite = 2*63.55 + 5*16.00 + 2*1.01 + 1*12.01
MW Malachite = 221.13
Mass of Cu in a mole of Malachite = 2*MM(CU) = 127.1
Now divide the mass of Cu by the mass of Malachite
