For a.
Since there are already two angles given for the triangle, we can measure the last angle using this formula:
90 + 55 + a = 180
Now solve for "a".
90 + 55 + a = 180
145 + a = 180
a = 180 - 145
a = 35°
For b.
From the picture above, the two triangle's tip are touching and having to form <em>vertical angles. </em>This means that the angles are congruent to each other.
Now that we have two angles in the second triangle(35 and 120), we can use the same formula:
35 + 120 + b = 180
Now solve for "b":
35 + 120 + b = 180
155 + b = 180
b = 180 - 155
b = 25°
Answer:
He should sell them he would be rich.
Step-by-step explanation:
Answer:
1. Objective function is a maximum at (16,0), Z = 4x+4y = 4(16) + 4(0) = 64
2. Objective function is at a maximum at (5,3), Z=3x+2y=3(5)+2(3)=21
Step-by-step explanation:
1. Maximize: P = 4x +4y
Subject to: 2x + y ≤ 20
x + 2y ≤ 16
x, y ≥ 0
Plot the constraints and the objective function Z, or P=4x+4y)
Push the objective function to the limit permitted by the feasible region to find the maximum.
Answer: Objective function is a maximum at (16,0),
Z = 4x+4y = 4(16) + 4(0) = 64
2. Maximize P = 3x + 2y
Subject to x + y ≤ 8
2x + y ≤ 13
x ≥ 0, y ≥ 0
Plot the constraints and the objective function Z, or P=3x+2y.
Push the objective function to the limit in the increase + direction permitted by the feasible region to find the maximum intersection.
Answer: Objective function is at a maximum at (5,3),
Z = 3x+2y = 3(5)+2(3) = 21
Answer:
63/50 as an improper fraction.
1 13/50 as a mixed number
Step-by-step explanation:
If they're travelling towards each other;
Effective speed = 75+55 = 130
Distance = 338m
Time= distance/ speed
T= 338/130
T= 2.6 hrs