1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
matrenka [14]
2 years ago
15

Lydia's bedroom has an area of 108 square feet. The length of the room is 12 feet long. What is the width of the room?

Mathematics
2 answers:
gladu [14]2 years ago
7 0

Answer: 9 Feet

Step-by-step explanation:

Sholpan [36]2 years ago
6 0

Answer:

hey it's the A xbxjdjdjdjdnd

You might be interested in
Exercise 3.9.101: Find a particular solution to x 0 = 5x + 4y+ t, y 0 = x + 8y−t, a) using integrating factor method, b) using e
enot [183]

In matrix form, the ODE is given by

\underbrace{\begin{bmatrix}x'\\y'\end{bmatrix}}_{\vec x'}=\underbrace{\begin{bmatrix}5&4\\1&8\end{bmatrix}}_A\underbrace{\begin{bmatrix}x\\y\end{bmatrix}}_{\vec x}+t\underbrace{\begin{bmatrix}1\\-1\end{bmatrix}}_{\vec f}

a. Move A\vec x to the left side and multiply both sides by the integrating factor, the matrix exponential of -A, e^{-At}:

e^{-At}\vec x'-Ae^{-At}\vec x=te^{-At}\vec f

Condense the left side as the derivative of a product:

\left(e^{-At}\vec x\right)=te^{-At}\vec f

Integrate both sides and multipy by e^{At} to solve for \vec x:

e^{-At}\vec x=\displaystyle\left(\int te^{-At}\,\mathrm dt\right)\vec f\implies\vec x=\displaystyle e^{At}\left(\int te^{-At}\,\mathrm dt\right)\vec f

Finding e^{\pm At} requires that we diagonalize A.

A has eigenvalues 4 and 9, with corresponding eigenvectors \begin{bmatrix}-4&1\end{bmatrix}^\top and \begin{bmatrix}1&1\end{bmatrix}^\top (explanation for this in part (b)), so we have

A=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4&0\\0&9\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4^n&0\\0&9^n\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\dfrac15\begin{bmatrix}4^{n+1}+9^n&4\cdot9^n-4^{n+1}\\9^n-4^n&4^n+4\cdot9^n\end{bmatrix}

\implies e^{\pm At}=\dfrac15\begin{bmatrix}4e^{\pm4t}+e^{\pm9t}&4e^{\pm9t}-4e^{\pm4t}\\e^{\pm9t}-e^{\pm4t}&e^{\pm4t}+4e^{\pm9t}\end{bmatrix}

\implies\vec x=\dfrac15e^{At}\begin{bmatrix}C_1\\C_2\end{bmatrix}-\dfrac1{216}\begin{bmatrix}72t+20\\-36t-7\end{bmatrix}

b. Find the eigenvalues of A:

\det(A-\lambda I_2)=\begin{vmatrix}5-\lambda&4\\1&8-\lambda\end{vmatrix}=\lambda^2-13\lambda+36=0

\implies(\lambda-4)(\lambda-9)=0\implies\lambda_1=4,\lambda_2=9

Let \vec\eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top and \vec\theta=\begin{bmatrix}\theta_1&\theta_2\end{bmatrix}^\top be the corresponding eigenvectors.

For \lambda_1=4, we have

\begin{bmatrix}1&4\\1&4\end{bmatrix}\begin{bmatrix}\eta_1\\\eta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

which means we can pick \eta_1=-4 and \eta_2=1.

For \lambda_2=9, we have

\begin{bmatrix}-4&4\\1&-1\end{bmatrix}\begin{bmatrix}\theta_1\\\theta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

so we pick \theta_1=\theta_2=1.

Then the characteristic solution to the system is

\vec x_c=C_1e^{\lambda_1t}\vec\eta+C_2e^{\lambda_2t}\vec\theta

\vec x_c=C_1e^{4t}\begin{bmatrix}-4\\1\end{bmatrix}+C_2e^{9t}\begin{bmatrix}1\\1\end{bmatrix}

c. Now we find the particular solution with undetermined coefficients.

The nonhomogeneous part of the ODE is a linear function, so we can start with assuming a particular solution of the form

\vec x_p=\vec at+\vec b\implies\vec x_p'=\vec a

Substituting these into the system gives

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\left(\begin{bmatrix}a_1\\a_2\end{bmatrix}t+\begin{bmatrix}b_1\\b_2\end{bmatrix}\right)+\begin{bmatrix}1\\-1\end{bmatrix}t

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\begin{bmatrix}a_1t+b_1\\a_2t+b_2\end{bmatrix}+\begin{bmatrix}t\\-t\end{bmatrix}

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}(5a_1+4a_2+1)t+(5b_1+4b_2)\\(a_1+8a_2-1)t+(b_1+8b_2)\end{bmatrix}

\implies\begin{cases}5a_1+4a_2=-1\\5b_1+4b_2=a_1\\a_1+8a_2=1\\b_1+8b_2=a_2\end{cases}\implies a_1=-\dfrac13,a_2=\dfrac16,b_1=-\dfrac5{54},b_2=\dfrac7{216}

Put everything together to get a solution

\vec x=\vec x_c+\vec x_p

that should match the solution in part (a).

8 0
3 years ago
Help Evaluate the expression. 24 ÷ 6 · 2 A. 2 B. 8 C. 36 D. 72
blsea [12.9K]
The answer is 8
24/6 = 4
Then 4 x 2 = 8
Hope I helped
3 0
2 years ago
Read 2 more answers
Kayson is looking at two buildings, building A and building B, at an angle of elevation of 73°. Building A is 30 feet away, and
grigory [225]

Answer:

The correct option is:

Building B; it is around 16.35 feet taller than building A.

Step-by-step explanation:

Consult the diagram below where the first figure represent building A and second figure represents building B

For building A:

tan θ = Perpendicular / Base

tan 73° = Height of building A / 30

Height of building A = tan73 · 30

Height of building A = 98.13 ft

For building B:

tan θ = Perpendicular / Base

tan 73° = Height of building B / 35

Height of building A = tan73 · 35

Height of building A = 114.48 ft

Building B is taller

Difference in height = height of building B - height of building A

Difference in height = 114.48 - 98.13 = 116.35 feet

3 0
3 years ago
Lola dice Argos mi perro tiene 10 kg menos que roco cuantos kilogramos tiene argos
Elena L [17]

Answer:

A=R-10

Step-by-step explanation:

The problem is:

<em>Lola says: Argos, my dog, has 10 kilograms less than Roco. How much kilograms Argos has?</em>

<em />

This problem is about algebraic language. We just need to express the ordinaty language into an equation.

We know the words less means difference. So, let's call A Argos' weight and R Roco's weight. We can expresse the given problem as

A=R-10

Notice that we applied a difference due to the word "less" in the problem.

Therefore, Argo's weight is given by the expression

A=R-10

7 0
2 years ago
Which equation is true for the value a = 7?
professor190 [17]
THE first option is correct
7 0
3 years ago
Read 2 more answers
Other questions:
  • Pleaseeeer help I’ll mark u as brainlest
    14·2 answers
  • 297.3 = 2hundred, 9tens, 7 ones, and 3 tenths. Regroup 297.3 using 2 hundred, 9 tens, 5 ones, and ? tenths
    8·1 answer
  • How many gallons of water would be need to completely fill a swimming pool with dimensions 10 ft by 15 ft by 6 ft?
    13·2 answers
  • Simplify the expression 4x^3+5x+10/2x+3.​
    14·1 answer
  • Please Help!
    9·2 answers
  • 20x-8y=-5 <br> 10x-4y=-4<br><br> Can someone please solve this
    8·1 answer
  • PLEASE HELP! I will award Brainliest!!! Find the area of the shaded regions. Give your answer as a completely simplified exact v
    6·2 answers
  • Pls anybody know this ?​
    14·1 answer
  • If y = 4x, what is y if the x = 5?
    14·1 answer
  • Drag the correct symbol into the box to compare the expressions.<br> 62–22 Response area 4(6+2)
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!