Plz get the app photomath it’ll be your lifesaver
An ordered pair which makes both inequalities true is (-1, -3).
<h3>What is an ordered pair?</h3>
An ordered pair is a pair of two points that are commonly written in a fixed order within parentheses as (x, y), which represents the x-coordinate or x-axis (abscissa) and the y-coordinate or y-axis (ordinate) on the coordinate plane of any graph.
Next, we would test the ordered pair with the given system of inequalities in order to determine which is true.
For ordered pair (-3, 5), we have:
y < –x + 1
5 < -(-3) + 1
5 < 3 + 1
5 < 4 (False).
For ordered pair (-2, 2), we have:
y < –x + 1
2 < -(-2) + 1
2 < 2 + 1
2 < 3 (True).
y > x
2 > -2 (True)
For ordered pair (-1, -3), we have:
y < –x + 1
-3 < -(-1) + 1
-3 < 1 + 1
-3 < 2 (True).
y > x
-3 > -1 (False)
For ordered pair (0, -1), we have:
y < –x + 1
-(-1) < -(0) + 1
1 < 1
1 < 1 (False).
y > x
-1 > 0 (False)
Read more on inequality here: brainly.com/question/27166555
#SPJ1
Answer:
I'm tried of smiling for others and holding all their problems
Answer:
B) {-2, 2, 5}
Step-by-step explanation:
Coordinate points on the graph
(1,5), (3,5) , (4,2) and (6, -2)
Range is a list of y values so in this case range is:
{-2, 2 , 5}