Answer:
The correct answer is 0.36 mol
Explanation:
First we have to calculate the molecular weight (Mw) of H₃BO₃ from the molar masses of the elements:
Mw(H₃BO₃)= 3 x Molar mass H + Molar mass B + (3 x Molar mass O)
= 3 x 1 g/mol + 10.8 g/mol + (3 x 16 g/mol)
= 61.8 g/mol
The molecular weight indicates that there are 61.6 grams per mol of substance. The scientist has 22.5 g, thus we can calculate the number of moles of H₃BO₃ by dividing the mass into the molecular weight as follows:
Number of moles of H₃BO₃ = mass/Mw= (22.5 g)/(61.8 g/mol) = 0.36 mol
There are 0.36 mol of H₃BO₃ in 750.0 mL of solution.
They all can condense and manipulate light<span />
Answer:
A decrease in temperature would decrease kinetic energy, therefore decreasing collisions possible.
Explanation:
A gas at a fixed volume is going to have collisions automatically. If you decrease the temperature (same thing as decreasing kinetic energy) you are cooling down the molecules in the container which gives them less energy and "relaxes" them. This decrease in energy causes them to move around much slower and causing less collisions, at a much slower rate. In a perfect world, these collisions do not slow down the molecule but we know that they do, just a very very small unmeasurable amount.
True, because the substance basically reacts to the nervous system just like the anesthetic. Which can affect your decision making, and you might experience drowsiness, slow reaction time which is very risky for the driver and his/her surroundings.
Hope this helps :)