Answer:
1. The image of the person is 1.41 m, virtual and formed at the back of the surface of the globe.
2. The person's image is 3.38 m tall.
Explanation:
From the given question, object distance, u = 0.75 m, object height = 1.8 m, radius of curvature of the reflecting globe, r = 8 cm = 0.08 m.
f =
=
= 0.04 m
1. The image distance, v, can be determined by applying mirror formula:
=
+ 
=
+ 
-
= 
= 
= - 
⇒ v = -
= - 1.41 m
The image of the person is 1.41 m, virtual and formed at the back of the surface of the globe.
2.
= 
= 
v = 
= 3.384
v = 3.38 m
The person's image is 3.38 m tall.
Answer:
the answer is B: earth takes to rotate once on its axis
Answer:
a force that attracts matter to the earth
Explanation:
depends on where you are the gravity can be different in space there is no gravity on Earth there is , that's why when you jump you come back down
Answer: D
Experiment 1 has a confounding variable related to the mass of the rockets. Any variation in mass may cause a discrepancy in the distance traveled.
This is the answer to the question because:
- Both experiments do have a confounding variable.
- Experiment 1 doesn't have to stay constant.
- A double-blind experiment will not do anything to the placebo.
- High blood pressure people will not make the results confusing.
The answer has to be the option D. Hope this helps you!
Answer:
ω₂=1.20
Explanation:
Given that
mass of the turn table ,M= 15 kg
mass of the ice ,m= 9 kg
radius ,r= 25 cm
Initial angular speed ,ω₁ = 0.75 rad/s
Initial mass moment of inertia



Final mass moment of inertia



Lets take final speed of the turn table after ice evaporated =ω₂ rad/s
Now by conservation angular momentum
I₁ ω₁ =ω₂ I₂

ω₂=1.20