No because there must be an even # if their is an even amount one of the forces isn’t being cancelled
Answer:
a. P = nRTV
Explanation:
The question is incomplete. Here is the complete question.
"All of the following equations are statements of the ideal gas law except a. P = nRTV b. PV/T = nR c. P/n = RT/v d. R = PV/nT"
Ideal gas equation is an equation that describes the nature of an ideal gas. The molecule of an ideal gas moves at a particular velocity depending on the temperature. This gases collides with one another elastically. The collision that an ideal gas experience is a perfectly elastic collision.
The ideal gas equation is expressed as shown:
PV = nRT where:
P is the pressure of the gas
V is the volume
n is the number of moles
R is the ideal gas constant
T is the temperature.
Based on the formula given for an ideal gas, it can be inferred that the equation. P = nRTV is not a statement of an ideal gas equation.
The remaining option will results to an ideal gas equation if they are cross multipled.
The Answer is C. the distance light travels in a year
Answer:
Option (b) is correct.
Explanation:
The motion under the influence of gravity is called projectile motion.
The acceleration due to gravity is constant through out the motion and it is always acting downwards.
When an athlete jumps and follow the projectile path, it always have the same horizontal velocity as there is no acceleration in the horizontal direction.
Also he has the vertical acceleration constant which is equal to the acceleration due to gravity and acts towards the center of earth.
Option (b) is correct.
Answer:
1.995 m
Explanation:
Distance of penny as seen by the person = 5 m
Height of person from water surface = 3.50 m
Apparent depth of penny = 5 - 3.50 = 1.5 m
refractive index of water, n = 1.33
real depth / apparent depth = n
real depth = 1.33 x 1.5 = 1.995 m
Thus, the actual depth of water at that point is 1.995 m.