
<h2><em>calculate</em></h2>
<em>
</em>
<h2><em>reduce </em><em>the </em><em>numbers</em></h2>
<em>
</em>
<h2><em>multiply</em></h2>
<em>
</em>
<h2><em>there </em><em>for </em><em>we </em><em>have </em><em>a </em><em>solution</em><em> to</em><em> the</em><em> </em><em>equation</em></h2>
<em>hope </em><em>it</em><em> helps</em>
<em>#</em><em>c</em><em>a</em><em>r</em><em>r</em><em>y</em><em> </em><em>on</em><em> learning</em>
<em>mark </em><em>me</em><em> as</em><em> brainlist</em><em> plss</em>
Answer:
<h2>
15m/s</h2>
Explanation:
The equation for a traveling wave as expressed as y(x, t) = A cos(kx −
t) where An is the amplitude f oscillation,
is the angular velocity and x is the horizontal displacement and y is the vertical displacement.
From the formula;
where;

Before we can get the transverse speed, we need to get the frequency and the wavelength.
frequency = 1/period
Given period = 2/15 s
Frequency = 
frequency = 1 * 15/2
frequency f = 15/2 Hertz
Given wavelength
= 2m
Transverse speed 

Hence, the transverse speed at that point is 15m/s
Answer:
The Answer is false
Explanation:
Electromagnetic waves differ from mechanical waves in that they do not require a medium to propagate. This means that electromagnetic waves can travel not only through air and solid materials, but also through the vacuum of space.
It slowly cools an hardens,eventually turning into igneous rock<span />