Answer:
Current, I = 0.000109 Amps
Explanation:
Given the following data;
Voltage = 6V
Resistance = 55,000 Ohms
To find the current flowing through the circuit;
Ohm's law states that at constant temperature, the current flowing in an electrical circuit is directly proportional to the voltage applied across the two points and inversely proportional to the resistance in the electrical circuit.
Mathematically, Ohm's law is given by the formula;
Where;
V represents voltage measured in voltage.
I represents current measured in amperes.
R represents resistance measured in ohms.
Making current the subject of formula, we have;
Substituting into the formula, we have;
Current, I = 0.000109 Amps
Explanation:
The center of gravity is near the grip and does not change during throw. "Throwing through the tip," a popular term of how to throw a javelin, means throwing through the grip or center of gravity. The center of pressure is the aerodynamic force of drag and lift on the javelin.
The statement that best explains the type of chemical reaction represented by Maya's picture is that it is neither a synthesis reaction nor a decomposition reaction because two reactants form two products. That is option B.
<h3>What is a chemical reaction?</h3>
A chemical reaction is the combination of two elements to yield a new product through the formation of bonds.
A chemical reaction is said to be a synthesis reaction when when two different atoms or molecules interact to form a different molecule or compound.
A chemical reaction is said to be a decomposition reaction when one reactant breaks down into two or more products.
Therefore, from the picture, the chemical reaction is neither a synthesis reaction nor a decomposition reaction because two reactants form two products.
Learn more about chemical reaction here:
brainly.com/question/16416932
#SPJ1
The most common liquid on planet earth is water
The electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
E is the electric field, σ is the surface charge density, and ε₀ is the electric constant.
To determine σ:
σ = Q/A
Where Q is the total charge of the sheet and A is the sheet's area. The sheet is a square with a side length d, so A = d²:
σ = Q/d²
Make this substitution in the equation for E:
E = Q/(2ε₀d²)
We see that E is inversely proportional to the square of d:
E ∝ 1/d²
The electric field at P has some magnitude E. Now we double the side length of the sheet while keeping the same amount of charge Q distributed over the sheet. By the relationship of E with d, the electric field at P must now have a quarter of its original magnitude:
