Answer:
(a). The blood travel during this acceleration is 0.0231 m.
(b). The time for the blood to reach its peak speed is 0.0459 sec.
Explanation:
Given that,
Acceleration = 22.0 m/s²
Speed = 1.01 m/s
(a). We need to calculate the distance
Using equation of motion

Where, v = final speed
u = initial speed
a = acceleration
s = distance
Put the value into the formula



(b). We need to calculate the time
Using equation of motion

Put the value into the formula



Hence, (a). The blood travel during this acceleration is 0.0231 m.
(b). The time for the blood to reach its peak speed is 0.0459 sec.
Answer:
90 J
Explanation:
W=fd
W=(75)(1.2)
W= 90 J
Answer:
SUPONIENDO QUE NO HAY FRICCIÓN
Explanation:
F = 66 kg(
) = 132 N
Answer:
Diameter decreases by the diameter of 0.0312 m.
Explanation:
Given that,
Bulk modulus = 14.0 × 10¹⁰ N/m²
Diameter d = 2.20 m
Depth = 2.40 km
Pressure = ρ g h = 1030 × 9.81 × 2.4 × 1000
= 24.25 × 10⁶ N/m²
Volume = 

Bulk modulus is equal to

now



Δ r = -0.0156 m
change in diameter
Δ d = -2 × 0.0156
Δ d = -0.0312 m
Diameter decreases by the diameter of 0.0312 m.
Answer:
Flow rate 2.34 m3/s
Diameter 0.754 m
Explanation:
Assuming steady flow, the volume flow rate along the pipe will always be constant, and equals to the product of flow speed and cross-section area.
The area at the well head is

So the volume flow rate along the pipe is

We can use the similar logic to find the cross-section area at the refinery

The radius of the pipe at the refinery is:



So the diameter is twice the radius = 0.38*2 = 0.754m