The oxidation state of the elements in the compounds are:
CoH₂:
FeBr₃:
<h3>What is the oxidation states of the elements in the given compounds?</h3>
The oxidation states of the elements in each of the given compounds is determined as follows:
Cobalt dihydride, CoH₂
Co = +2
H = -1
Iron (iii) bromide, FeBr₃
Fe = +3
Br = -1
In conclusion, the oxidation state of the elements are charges they have in the compound.
Learn more about oxidation state at: brainly.com/question/27239694
#SPJ1
Protons Ha and Hb in the compound given are enantiotopic.
<h3>What are enantiotopic protons?</h3>
Enantiotopic protons can be defined as those protons that can be replaced by another groups like deuterium.
<h3>What is a compound?</h3>
A compound is a substance which contains two or more elements chemically combined together.
So therefore, Protons Ha and Hb in the compound given are enantiotopic.
Learn more about enantiotopic protons:
brainly.com/question/24106290
#SPJ1
6.022*10^23 is the answer
Answer:
Covalent bonds.
Explanation:
Diamond is organized in a giant lattice structure with strong covalent bonds between carbon atoms. Each carbon atom forms 4 bonds. Explanation: Each carbon atom has four electrons in its outer shell, all of which form covalent bonds that are strong and hard to break.
Answer:
The pH of the solution is 8, 40-
Explanation:
The pH indicates the acidity or basicity of a substance. PH values between 0 and less than 7 indicate acidic solutions, 7 neutral and greater than 7 to 14 basic. It is calculated as
pH = -log (H30+)
pH= -log (4x10-9M)
<em>pH=8,40</em>