First M stands for Molarity which is (moles of solute) / (Liters of solution). we also know that moles = (mass) / (molar mass). so we can form some equations here. We know:
Molarity (M) = moles (mol) / Liters (L)
moles (mol) = (mass) / (molar mass)
we can substitute the (mass) / (molar mass) for (moles) and get:
M = [(mass) / (molar mass)] / Liters
we can now isolate mass and get
M * Liters * molar mass = mass
now we need to find the molar mass of CaCl2 which is 110.98 g/mol
plug the values in and get
.350M * 6.5L * 110.98 g/mol = mass
mass = 252.4795g however the 6.5L has only 2 sig figs so i would say
mass CaCl2 = 2.5 * 10 ^2 g
Answer:
a. decrease the amount of the common ion in the system
Explanation:
The correct option is - a. decrease the amount of the common ion in the system
Reason -
Adding a common ion decreases solubility, as the reaction shifts toward the left to relieve the stress of the excess product.
Adding a common ion to a dissociation reaction causes the equilibrium to shift left, toward the reactants, causing precipitation.
Answer : Half life and radioactive decay are inversely proportional to each other.
Explanation :
The mathematic relationship between the half-life and radioactive decay :
................(1)
where,
N = number of radioactive atoms at time, t
= number of radioactive atoms at the beginning when time is zero
e = Euler's constant = 2.17828
t = time
= decay rate
when
then the number of radioactive decay become half of the initial decay atom i.e
.
Now substituting these conditions in above equation (1), we get

By rearranging the terms, we get

Now taking natural log on both side,

By rearranging the terms, we get

This is the relationship between the half-life and radioactive decay.
Hence, from this we conclude that the Half life and radioactive decay are inversely proportional to each other. That means faster the decay, shorter the half-life.