Answer:
The density of acetic acid at 30°C = 1.0354_g/mL
Explanation:
specific gravity of acetic acid = (Density of acetic acid at 30°C) ÷ (Density of water at 30°C)
Therefore, the density of acetic acid at 30°C = (Density of water at 30°C) × (Specific gravity of acetic acid at 30°C)
= 0.9956 g/mL × 1.040
= 1.0354_g/mL
Specific gravity, which is also known as relative density, is the ratio of the density of a substance to the density of a specified standard substance.
Generally the standard substance of to which other solid and liquid substances are compared is water which has a density of 1.0 kg per litre or 62.4 pounds/cubic foot at 4 °C (39.2 °F) while gases are normally compared with dry air, with a density of 1.29 grams/litre or 1.29 ounces/cubic foot under standard conditions of a temperature of 0 °C and one standard atmospheric pressure
Explanation:
Fossil fuel is an overall term for covered ignitable geologic stores of natural materials, framed from rotted plants and creatures that have been changed over to unrefined petroleum, coal, flammable gas, or weighty oils by introduction to warmth and weight in the world's outside more than a huge number of years.
The consuming of petroleum products by people is the biggest wellspring of emanations of carbon dioxide, which is one of the ozone depleting substances that permits radiative compelling and adds to an unnatural weather change.
A little bit of hydrocarbon-based powers are biofuels gotten from climatic carbon dioxide, and consequently don't build the net measure of carbon dioxide in the environment.
Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.
During a collision, the person would most likely experience the same conditions with or without a seatbelt.
Answer: True
Explanation:
An ester refers to the class of organic compounds which react with water in order to produce organic acids, inorganic acids or alcohol. They are usually gotten from carboxylic acids.
A method of favoring the formation of an ester is to add excess acetic acid. Therefore, the above statement is true.