1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vilka [71]
3 years ago
15

The record time for running the Boston Marathon is 2.12 hours at an average speed of 12.5 miles per hour. What distance does the

Boston Marathon approximately cover?
Mathematics
2 answers:
Gala2k [10]3 years ago
6 0

Answer:

26.5 miles.

Step-by-step explanation:

Given: Time for running Boston Marathon= 2.12 h

Speed= 12.5 mph

Distance covered in Boston Marathon  

Distance covered= speed x time  

Distance covered = 12.5 x 2.12=26.5 miles  

∴ Distance covered in the Boston Marathon is <u>26.5 miles.</u>

Llana [10]3 years ago
3 0

Answer:

26.5

Step-by-step explanation:

You have two numbers. Do you think you should  add, multiply, substract, or divide..?

Multiply, 2.12 x 12.5 on paper or a calculator and you will get 26.5.

You might be interested in
If a system of linear equations has no solution, then ______.
adelina 88 [10]

Answer:

Answer. Answer: A system of linear equation has no solution when the graphs are parallel.Step-by-step explanation:

4 0
3 years ago
Help me please need help
nlexa [21]
The slow is equal to 4
8 0
3 years ago
The graph represents revenue in dollars as a function of greeting cards sold. A coordinate plane showing Greeting Card Revenue,
Travka [436]

Answer:

y=4x

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Let A be a given matrix below. First, find the eigenvalues and their corresponding eigenspaces for the following matrices. Then,
Rama09 [41]

It looks like given matrices are supposed to be

\begin{array}{ccccccc}\begin{bmatrix}3&2\\2&3\end{bmatrix} & & \begin{bmatrix}1&-1\\2&-1\end{bmatrix} & & \begin{bmatrix}1&2&3\\0&2&3\\0&0&3\end{bmatrix} & & \begin{bmatrix}3&1&1\\1&3&1\\1&1&3\end{bmatrix}\end{array}

You can find the eigenvalues of matrix A by solving for λ in the equation det(A - λI) = 0, where I is the identity matrix. We also have the following facts about eigenvalues:

• tr(A) = trace of A = sum of diagonal entries = sum of eigenvalues

• det(A) = determinant of A = product of eigenvalues

(a) The eigenvalues are λ₁ = 1 and λ₂ = 5, since

\mathrm{tr}\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3 + 3 = 6

\det\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3^2-2^2 = 5

and

λ₁ + λ₂ = 6   ⇒   λ₁ λ₂ = λ₁ (6 - λ₁) = 5

⇒   6 λ₁ - λ₁² = 5

⇒   λ₁² - 6 λ₁ + 5 = 0

⇒   (λ₁ - 5) (λ₁ - 1) = 0

⇒   λ₁ = 5 or λ₁ = 1

To find the corresponding eigenvectors, we solve for the vector v in Av = λv, or equivalently (A - λI) v = 0.

• For λ = 1, we have

\begin{bmatrix}3-1&2\\2&3-1\end{bmatrix}v = \begin{bmatrix}2&2\\2&2\end{bmatrix}v = 0

With v = (v₁, v₂)ᵀ, this equation tells us that

2 v₁ + 2 v₂ = 0

so that if we choose v₁ = -1, then v₂ = 1. So Av = v for the eigenvector v = (-1, 1)ᵀ.

• For λ = 5, we would end up with

\begin{bmatrix}-2&2\\2&-2\end{bmatrix}v = 0

and this tells us

-2 v₁ + 2 v₂ = 0

and it follows that v = (1, 1)ᵀ.

Then the decomposition of A into PDP⁻¹ is obtained with

P = \begin{bmatrix}-1 & 1 \\ 1 & 1\end{bmatrix}

D = \begin{bmatrix}1 & 0 \\ 0 & 5\end{bmatrix}

where the n-th column of P is the eigenvector associated with the eigenvalue in the n-th row/column of D.

(b) Consult part (a) for specific details. You would find that the eigenvalues are i and -i, as in i = √(-1). The corresponding eigenvectors are (1 + i, 2)ᵀ and (1 - i, 2)ᵀ, so that A = PDP⁻¹ if

P = \begin{bmatrix}1+i & 1-i\\2&2\end{bmatrix}

D = \begin{bmatrix}i&0\\0&i\end{bmatrix}

(c) For a 3×3 matrix, I'm not aware of any shortcuts like above, so we proceed as usual:

\det(A-\lambda I) = \det\begin{bmatrix}1-\lambda & 2 & 3 \\ 0 & 2-\lambda & 3 \\ 0 & 0 & 3-\lambda\end{bmatrix} = 0

Since A - λI is upper-triangular, the determinant is exactly the product the entries on the diagonal:

det(A - λI) = (1 - λ) (2 - λ) (3 - λ) = 0

and it follows that the eigenvalues are λ₁ = 1, λ₂ = 2, and λ₃ = 3. Now solve for v = (v₁, v₂, v₃)ᵀ such that (A - λI) v = 0.

• For λ = 1,

\begin{bmatrix}0&2&3\\0&1&3\\0&0&2\end{bmatrix}v = 0

tells us we can freely choose v₁ = 1, while the other components must be v₂ = v₃ = 0. Then v = (1, 0, 0)ᵀ.

• For λ = 2,

\begin{bmatrix}-1&2&3\\0&0&3\\0&0&1\end{bmatrix}v = 0

tells us we need to fix v₃ = 0. Then -v₁ + 2 v₂ = 0, so we can choose, say, v₂ = 1 and v₁ = 2. Then v = (2, 1, 0)ᵀ.

• For λ = 3,

\begin{bmatrix}-2&2&3\\0&-1&3\\0&0&0\end{bmatrix}v = 0

tells us if we choose v₃ = 1, then it follows that v₂ = 3 and v₁ = 9/2. To make things neater, let's scale these components by a factor of 2, so that v = (9, 6, 2)ᵀ.

Then we have A = PDP⁻¹ for

P = \begin{bmatrix}1&2&9\\0&1&6\\0&0&2\end{bmatrix}

D = \begin{bmatrix}1&0&0\\0&2&0\\0&0&3\end{bmatrix}

(d) Consult part (c) for all the details. Or, we can observe that λ₁ = 2 is an eigenvalue, since subtracting 2I from A gives a matrix of only 1s and det(A - 2I) = 0. Then using the eigen-facts,

• tr(A) = 3 + 3 + 3 = 9 = 2 + λ₂ + λ₃   ⇒   λ₂ + λ₃ = 7

• det(A) = 20 = 2 λ₂ λ₃   ⇒   λ₂ λ₃ = 10

and we find λ₂ = 2 and λ₃ = 5.

I'll omit the details for finding the eigenvector associated with λ = 5; I ended up with v = (1, 1, 1)ᵀ.

• For λ = 2,

\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}v = 0

tells us that if we fix v₃ = 0, then v₁ + v₂ = 0, so that we can pick v₁ = 1 and v₂ = -1. So v = (1, -1, 0)ᵀ.

• For the repeated eigenvalue λ = 2, we find the generalized eigenvector such that (A - 2I)² v = 0.

\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}^2 v = \begin{bmatrix}3&3&3\\3&3&3\\3&3&3\end{bmatrix}v = 0

This time we fix v₂ = 0, so that 3 v₁ + 3 v₃ = 0, and we can pick v₁ = 1 and v₃ = -1. So v = (1, 0, -1)ᵀ.

Then A = PDP⁻¹ if

P = \begin{bmatrix}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{bmatrix}

D = \begin{bmatrix}5&0&0\\0&2&0\\0&2&2\end{bmatrix}

3 0
3 years ago
If f(x) = 5x-2, what is (x)?
LiRa [457]

Answer:

x= 0.4, or x = 2/5

Step-by-step explanation:

To find x you have to replace f(x) with 0 and solve for x

Hope this helps:)

4 0
3 years ago
Other questions:
  • #7: At the gym on Saturday, Reese ran 5 miles on the treadmill and then
    13·1 answer
  • Nate is 4 years older than 2 times his brother’s age. Write a rule that represents Nate’s age “n” as a function of his brother’s
    8·1 answer
  • Multiples of 7in order from smallest to largest
    6·1 answer
  • keely has $45.00 to spend on shirt. each shirt $8.50, and there is a $2.50 shipping fee for the order. how many shirts can she b
    13·1 answer
  • In triangle ABC angle BAD is 46° find BCA and AB=AD=AC
    15·1 answer
  • Which function dominates x^p or p^x
    11·1 answer
  • Help pizzzz The wheel of a bike has a diameter of 26 inches. What is the circumference of the wheel?
    9·2 answers
  • The sum of two numbers is 44, and the larger number is 2 more than the smaller number. What is the smaller number?
    7·1 answer
  • Pls help me pls i will mark brainliest
    15·1 answer
  • Two bottles are selected at random, without replacement from a drawer containing 2 bottles of coke, 3 bottles of fanta and 4 bot
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!