Answer:
i think 55 i'm not sure
Step-by-step explanation:
Answer:
No there cannot be the same number of stickers on each page.
Step-by-step explanation:
If you want to find out how many stickers need to be in every page to be even you would add all the stickers up. 6+6+9+10+11= 42. Take the 42 and divide it by 5 to see how many stickers would go in each page. This will give you 8.4. However since this number is a decimal it can't be split evenly in whole stickers for each page. Meaning that it wouldn't be possible for each page to have a evenly distributed number of stickers per each page.
Answer:
The last one
Step-by-step explanation:
The standard method for solving an equation like 3x + 5 = 26 is to use
the Subtraction Property of Equality and then the Division Property of
Equality.
3x + 5 = 26
you would have to subtract first to get your answer
so subtract 5 on both sides
3x= 21
then u would have to divide 3 by both sides to get the x alone/ isolated
x= 7
and that is why u should use " Subtraction Property of Equality and then the Division Property of Equality, " as your method.
Answer:
![6 \sqrt[3]{5}](https://tex.z-dn.net/?f=6%20%5Csqrt%5B3%5D%7B5%7D)
Step-by-step explanation:
For the problem,
, use rules for simplifying cube roots. Under the operations of multiplication and division, if the roots have the same index (here it is 3) you can combine them.
![\sqrt[3]{24} *\sqrt[3]{45} = \sqrt[3]{24*45}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B24%7D%20%2A%5Csqrt%5B3%5D%7B45%7D%20%3D%20%5Csqrt%5B3%5D%7B24%2A45%7D)
You can multiply it out completely, however to simplify after you'll need to pull out perfect cubes. Factor 24 and 45 into any perfect cube factors which multiply to each number. If none are there, then prime factors will do. You can group factors together such as 3*3*3 which is 27 and a perfect cube.
![\sqrt[3]{24*45} =\sqrt[3]{3*8*5*3*3} = 6 \sqrt[3]{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B24%2A45%7D%20%3D%5Csqrt%5B3%5D%7B3%2A8%2A5%2A3%2A3%7D%20%20%3D%206%20%5Csqrt%5B3%5D%7B5%7D)
Answer:
A
Step-by-step explanation:
We are given that:

And we want to find:

Remember that tangent and cotangent are co-functions. In other words, they follow the cofunction identities:

Therefore, since tan(θ) = 1.3 and cot(90° - θ) = tan(θ), then cot(90° - θ) must also be 1.3.
Our answer is A.