Step 1: Subtract -2 from both sides.<span><span><span><span>
m2</span>+<span>4m</span></span>−<span>(<span>−2</span>)</span></span>=<span><span>−2</span>−<span>(<span>−2</span>)</span></span></span><span><span><span><span>
m2</span>+<span>4m</span></span>+2</span>=0</span>
Step 2: Use quadratic formula with a=1, b=4, c=2.<span>
m=<span><span><span>−b</span>±<span>√<span><span>b2</span>−<span><span>4a</span>c</span></span></span></span><span>2a</span></span></span><span>
m=<span><span><span>−<span>(4)</span></span>±<span>√<span><span><span>(4)</span>2</span>−<span><span>4<span>(1)</span></span><span>(2)</span></span></span></span></span><span>2<span>(1)</span></span></span></span><span>
m=<span><span><span>−4</span>±<span>√8</span></span>2</span></span><span><span>
m=<span><span>−2</span>+<span><span><span>√2</span><span> or </span></span>m</span></span></span>=<span><span>−2</span>−<span>√2</span></span></span><span>
</span>
Answer:
y=a(x-p)(x-q)
y=a(x+2+√2)(x+2-√2)
passing through point (-1,1)
substitute
1=a(-1+2+√2)(-1+2-√2)
1=a(1+√2)(1-√2)
1=a(1-2)
1=a(-1)
a=1/(-1)
a=-1
y=-(x+[2+√2])(x+[2-√2])
y=-(x2+4x+2)
Thanks rate 5 stars
Sh(2x) = (e^2x + e^-2x)/2
<span>Thus the integral becomes </span>
<span>Int[e^3x*(e^2x + e^-2x)/2] = Int[(e^5x + e^x)/2] </span>
<span>= e^5x/10 + e^x/2 + C
</span>=(1/10)(e^5x) + (1/2)(e^x) + C